
Virtuozzo 7
User's Guide

August 31, 2018

Virtuozzo International GmbH

Vordergasse 59

8200 Schaffhausen

Switzerland

Tel: + 41 52 632 0411

Fax: + 41 52 672 2010

https://virtuozzo.com

Copyright ©2001-2018 Virtuozzo International GmbH. All rights reserved.

This product is protected by United States and international copyright laws. The product’s underlying

technology, patents, and trademarks are listed at https://virtuozzo.com.

Microsoft, Windows, Windows Server, Windows NT, Windows Vista, and MS-DOS are registered trademarks

of Microsoft Corporation.

Apple, Mac, the Mac logo, Mac OS, iPad, iPhone, iPod touch, FaceTime HD camera and iSight are trademarks

of Apple Inc., registered in the US and other countries.

Linux is a registered trademark of Linus Torvalds. All other marks and names mentioned herein may be

trademarks of their respective owners.

https://virtuozzo.com
https://virtuozzo.com/wp-content/uploads/2016/12/VZ_legal_notices_20161129.pdf

Contents

1. Learning Virtuozzo Basics . 1

1.1 Virtuozzo Overview . 1

1.2 Differences between Virtuozzo and OpenVZ . 2

1.3 OS Virtualization Layer . 2

1.3.1 Basics of OS Virtualization . 2

1.3.2 Virtuozzo Containers . 3

1.3.2.1 Virtuozzo Container Hardware . 4

1.3.3 Memory and IOPS Deduplication . 5

1.3.4 Templates . 6

1.4 Hardware Virtualization Layer . 7

1.4.1 Hardware Virtualization Basics . 7

1.4.2 Virtuozzo Virtual Machines . 8

1.4.2.1 Intel Virtualization Technology Support . 8

1.4.3 Virtual Machine Hardware . 8

1.4.4 Virtual Machine Files . 9

1.4.5 Support of Virtual and Real Media . 10

1.4.5.1 Supported Types of Hard Disks . 10

1.4.5.2 Virtual Hard Disks . 10

1.4.5.3 CD/DVD Disc Images . 10

1.5 Virtuozzo Configuration . 11

1.6 Resource Management . 11

1.7 Understanding Licensing . 11

1.8 Physical Server Availability Considerations . 12

2. Managing Virtual Machines and Containers . 13

2.1 Creating Virtual Machines and Containers . 13

i

2.1.1 Choosing OS EZ Templates for Containers . 13

2.1.1.1 Listing OS EZ Templates . 13

2.1.1.2 Installing and Caching OS EZ Templates . 14

2.1.2 Creating Containers . 14

2.1.3 Creating Virtual Machines . 15

2.1.4 Supported Guest Operating Systems . 16

2.1.4.1 Virtual Machines . 16

2.1.4.2 Containers . 17

2.2 Performing Initial Configuration of Virtual Machines and Containers 17

2.2.1 Using cloud-init for Virtual Machine Guest Initialization 18

2.2.2 Installing Virtuozzo Guest Tools . 18

2.2.3 Configuring Network Settings . 21

2.2.4 Setting Passwords for Virtual Machines and Containers 22

2.2.5 Setting Startup Parameters . 22

2.3 Starting, Stopping, Restarting, and Querying Status of Virtual Machines and Containers 23

2.3.1 Starting Virtual Machines and Containers . 23

2.3.2 Stopping Virtual Machines and Containers . 23

2.3.3 Restarting Virtual Machines and Containers . 23

2.3.4 Checking Status of Virtual Machines and Containers . 24

2.4 Listing Virtual Machines and Containers . 24

2.5 Cloning Virtual Machines and Containers . 25

2.5.1 Creating Linked Clones . 25

2.5.2 Configuring Default Directories . 26

2.6 Suspending Virtual Machines and Containers . 27

2.7 Running Commands in Virtual Machines and Containers . 27

2.8 Deleting Virtual Machines and Containers . 28

2.9 Viewing Detailed Information About Virtual Machines and Containers 29

2.10 Managing Virtual Machine and Container Backups . 30

2.10.1 Creating Virtual Machine and Container Backups . 30

2.10.2 Listing Virtual Machine and Container Backups . 31

2.10.3 Restoring Virtual Machines and Containers from Backups 32

2.10.4 Deleting Virtual Machine and Container Backups . 33

2.10.5 Backing Up Entire Servers . 34

2.10.6 Attaching Backups to Virtual Machines and Containers . 35

2.10.6.1 Attaching Backups to Linux Virtual Machines 35

ii

2.10.6.2 Attaching Backups to Windows Virtual Machines 37

2.10.6.3 Attaching Backups to Linux Containers . 37

2.10.7 Detaching Backups from Virtual Machines and Containers 38

2.11 Managing Templates . 38

2.11.1 Creating Templates . 39

2.11.2 Listing Templates . 40

2.11.3 Deploying Templates . 40

2.11.4 Storing Templates on Virtuozzo Storage . 41

2.12 Managing Snapshots . 41

2.12.1 Creating Snapshots . 42

2.12.1.1 Creating Virtual Machine Snapshots . 42

2.12.1.2 Creating Container Snapshots . 42

2.12.1.3 Snapshot Branching . 43

2.12.1.4 Restrictions and Recommendations . 43

2.12.2 Listing Snapshots . 44

2.12.3 Reverting to Snapshots . 45

2.12.4 Deleting Snapshots . 45

2.13 Migrating Virtual Machines and Containers . 45

2.13.1 Types of Migration . 47

2.13.1.1 Offline Migration of Virtual Machines and Containers 47

2.13.1.2 Live Migration of Virtual Machines and Containers 47

2.13.2 Migrating Virtual Machines and Containers Between Virtuozzo 7 Servers 49

2.13.3 Migrating Virtual Machines and Containers from Virtuozzo 6 to Virtuozzo 7 49

2.13.4 Migrating Virtual Machine and Container Templates . 50

2.13.5 Migrating EZ Templates . 51

2.14 Performing Container-specific Operations . 51

2.14.1 Reinstalling Containers . 52

2.14.1.1 Customizing Container Reinstallation . 52

2.14.2 Enabling VPN for Containers . 53

2.14.3 Setting Up NFS Server in Containers . 54

2.14.4 Mounting NFS Shares on Container Start . 54

2.14.5 Managing Container Virtual Disks . 55

2.14.5.1 Adding Virtual Disks to Containers . 55

2.14.5.2 Configuring Container Virtual Disks . 57

2.14.5.3 Deleting Virtual Disks from Containers . 58

iii

2.14.6 Restarting Containers . 58

2.14.7 Creating SimFS-based Containers . 59

2.15 Performing Virtual Machine-specific Operations . 59

2.15.1 Pausing Virtual Machines . 59

2.15.2 Managing Virtual Machine Devices . 60

2.15.2.1 Adding New Devices . 60

2.15.2.2 Initializing Newly Added Disks . 63

2.15.2.3 Configuring Virtual Devices . 65

2.15.2.4 Deleting Devices . 67

2.15.3 Making Screenshots . 68

2.15.4 Configuring IP Address Ranges for Host-Only Networks 68

2.15.5 Configuring Virtual Machine Crash Mode . 69

3. Managing Resources . 70

3.1 Managing CPU Resources . 70

3.1.1 Configuring CPU Units . 71

3.1.2 Configuring CPU Affinity for Virtual Machines and Containers 71

3.1.3 Configuring CPU Limits for Virtual Machines and Containers 72

3.1.3.1 Using –cpulimit to Set CPU Limits . 72

3.1.3.2 Using –cpus to Set CPU Limits . 73

3.1.3.3 Using –cpulimit and –cpus Simultaneously . 73

3.1.3.4 CPU Limit Specifics . 73

3.1.4 Binding CPUs to NUMA Nodes . 74

3.1.5 Enabling CPU Hotplug for Virtual Machines . 75

3.1.6 Configuring CPU Topology for Virtual Machines . 76

3.2 Managing Disk Quotas . 77

3.3 Managing Virtual Disks . 77

3.3.1 Resizing Virtual Disks . 77

3.3.1.1 Checking the Minimum Disk Capacity . 78

3.3.2 Compacting Disks . 78

3.3.3 Managing Virtual Machine Disk Interfaces . 79

3.4 Managing Network Accounting and Bandwidth . 80

3.4.1 Network Traffic Parameters . 80

3.4.2 Configuring Network Classes . 81

3.4.3 Viewing Network Traffic Statistics . 82

3.4.4 Configuring Traffic Shaping . 84

iv

3.4.4.1 Setting BANDWIDTH Parameter . 85

3.4.4.2 Setting TOTALRATE Parameter . 85

3.4.4.3 Setting RATEMPU Parameter . 85

3.4.4.4 Setting RATE and RATEBOUND Parameters . 86

3.4.4.5 Traffic Shaping Example . 87

3.5 Managing Disk I/O Parameters . 87

3.5.1 Configuring Priority Levels for Virtual Machines and Containers 87

3.5.2 Configuring Disk I/O Bandwidth . 88

3.5.3 Configuring the Number of I/O Operations Per Second 89

3.5.3.1 Setting the Direct Access Flag Inside Containers 90

3.5.4 Viewing Disk I/O Statistics . 90

3.5.5 Setting I/O Limits for Backup and Migration Operations 91

3.6 Managing Containers Memory Parameters . 91

3.6.1 Configuring Main VSwap Parameters . 92

3.6.2 Configuring Container Memory Guarantees . 93

3.6.3 Configuring Container Memory Allocation Limit . 93

3.6.4 Configuring Container OOM Killer Behavior . 94

3.6.5 Tuning VSwap . 95

3.7 Managing Virtual Machines Memory Parameters . 95

3.7.1 Configuring Virtual Machine Memory Size . 96

3.7.2 Configuring Virtual Machine Video Memory Size . 96

3.7.3 Enabling Virtual Machine Memory Hotplugging . 97

3.7.4 Configuring Virtual Machine Memory Guarantees . 97

3.8 Managing Container Resource Configuration . 98

3.8.1 Splitting Server Into Equal Pieces . 99

3.8.2 Applying New Configuration Samples to Containers . 99

3.9 Managing Virtual Machine Configuration Samples . 100

3.9.1 Creating a Configuration Sample . 101

3.9.2 Applying Configuration Samples to Virtual Machines . 101

3.9.3 Parameters Applied from Configuration Samples . 101

3.10 Monitoring Resources . 102

4. Managing Services and Processes . 104

4.1 What Are Services and Processes . 104

4.2 Main Operations on Services and Processes . 105

4.3 Managing Processes and Services . 106

v

4.3.1 Viewing Active Processes and Services . 106

4.3.2 Monitoring Processes in Real Time . 108

4.3.3 Determining Container UUIDs by Process IDs . 109

5. Managing Network . 111

5.1 Managing Network Adapters on the Hardware Node . 111

5.2 Networking Modes in Virtuozzo . 112

5.2.1 Container Network Modes . 112

5.2.1.1 Host-Routed Mode for Containers . 112

5.2.1.2 Bridged Mode for Containers . 114

5.2.2 Virtual Machine Network Modes . 116

5.2.2.1 Bridged Mode for Virtual Machines . 116

5.2.2.2 Host-Routed Mode for Virtual Machines . 118

5.2.3 Differences Between Host-Routed and Bridged Network Modes 119

5.3 Configuring Virtual Machines and Containers in Host-Routed Mode 120

5.3.1 Setting IP Addresses . 120

5.3.2 Setting DNS Server Addresses . 121

5.3.3 Setting DNS Search Domains . 121

5.3.3.1 Switching Virtual Machine Adapters to Host-Routed Mode 122

5.4 Configuring Virtual Machines and Containers in Bridged Mode . 122

5.4.1 Managing Virtual Networks . 122

5.4.1.1 Creating Virtual Networks . 123

5.4.1.2 Creating Network Bridges for Network Adapters 123

5.4.1.3 Configuring Virtual Network Parameters . 127

5.4.1.4 Listing Virtual Networks . 128

5.4.1.5 Connecting Virtual Networks to Adapters . 128

5.4.1.6 Deleting Virtual Networks . 129

5.4.2 Managing Virtual Network Adapters in Virtual Environments 129

5.4.2.1 Creating and Deleting Virtual Adapters . 130

5.4.2.2 Configuring Virtual Adapter Parameters . 130

5.4.2.3 Connecting Virtual Environments to Virtual Networks 131

6. Managing Licenses . 133

6.1 Installing the License . 133

6.1.1 Setting Up Proxy Server for License Activation . 133

6.1.2 Installing the License from Product Keys, Activation Codes, or License Files 134

vi

6.2 Updating the License . 134

6.2.1 Switching License to a New HWID . 135

6.3 Transferring the License to Another Server . 135

6.4 Viewing the License . 136

6.4.1 License Statuses . 137

7. Keeping Your System Up To Date . 139

7.1 Updating Virtuozzo . 140

7.1.1 Updating All Components . 141

7.1.2 Updating Kernel . 141

7.1.3 Updating KVM/QEMU Hypervisor in Virtual Machines . 141

7.1.3.1 Updating KVM/QEMU Hypervisor Manually . 142

7.1.4 Updating EZ Templates . 143

7.2 Updating Virtuozzo Kernel with ReadyKernel . 143

7.2.1 Installing ReadyKernel Patches Automatically . 144

7.2.2 Managing ReadyKernel Patches Manually . 144

7.2.2.1 Dowloading, Installing, and Loading ReadyKernel Patches 144

7.2.2.2 Loading and Unloading ReadyKernel Patches 145

7.2.2.3 Installing and Removing ReadyKernel Patches for Specific Kernels 145

7.2.2.4 Downgrading ReadyKernel Patches . 145

7.2.3 Disabling Loading of ReadyKernel Patches on Boot . 146

7.2.4 Managing ReadyKernel Logs . 146

7.3 Updating Software in Virtual Machines . 146

7.3.1 Updating Virtuozzo Guest Tools in Virtual Machines . 146

7.4 Updating Containers . 147

7.4.1 Updating EZ Template Packages in Containers . 148

7.4.2 Updating OS EZ Template Caches . 149

8. Managing High Availability Clusters . 150

8.1 Prerequisites for High Availability . 151

8.2 Enabling and Disabling High Availability on Nodes . 152

8.2.1 Disabling High Availability for Specific Virtual Machines and Containers 153

8.2.2 Enabling High Availability for iSCSI Targets . 154

8.2.3 Disabling High Availability on Nodes . 154

8.3 Configuring Resource Relocation Modes . 154

8.4 Configuring Resource Relocation Modes on Nodes Participating in S3 or iSCSI Export 156

vii

8.5 Configuring HA Priority for Virtual Machines and Containers . 157

8.6 Managing CPU Pools . 158

8.6.1 Adding Nodes to CPU Pools . 158

8.6.2 Monitoring CPU Pools . 160

8.6.3 Removing Nodes from CPU Pools . 160

8.7 Monitoring Cluster Status . 160

8.8 Managing Cluster Resources with Scripts . 162

9. Hardening Your Virtuozzo Server . 164

9.1 Update Policy . 164

9.2 Audit Policy . 164

9.2.1 Storing Logs Remotely . 165

9.2.2 Viewing Critical Audit Messages . 165

9.3 Mount Policy . 165

9.4 Service Policy . 166

9.5 Account Policy . 167

9.6 Networking Policy . 167

10. Advanced Tasks . 168

10.1 Configuring Automatic Memory Management Policies . 168

10.1.1 Optimizing Virtual Machine Memory with Kernel Same-Page Merging 169

10.1.2 Managing Host Services with VCMMD . 170

10.1.3 Managing Virtuozzo Storage Services with VCMMD . 171

10.2 Creating Customized Containers . 172

10.2.1 Using Golden Image Functionality . 172

10.2.1.1 Disabling Golden Image Functionality . 173

10.2.2 Using Customized EZ Templates . 173

10.2.2.1 EZ Template Configuration Files . 174

10.2.3 Creating Customized EZ Template RPMs . 176

10.3 Setting Up Docker in Virtuozzo Containers . 176

10.3.1 Setting Up Docker for Running in Swarm Mode . 177

10.3.2 Restrictions and Limitations for Docker in Virtuozzo Containers 178

10.4 Managing Container Virtual Hard Disk Encryption . 178

10.4.1 Setting Up Encryption Key Requester . 179

10.4.2 Encrypting and Decrypting Container Virtual Hard Disks 179

10.4.3 Encrypting System Swap . 180

viii

10.5 Connecting to Virtual Machines and Containers via VNC . 181

10.5.1 Securing VNC Connections with SSL . 182

10.5.2 Enabling VNC Access to Virtual Machines . 182

10.5.3 Enabling VNC Access to Containers . 183

10.5.4 Connecting with a VNC Client . 183

10.6 Managing iptables Modules . 183

10.6.1 Using iptables Modules in Virtuozzo . 183

10.6.2 Using iptables Modules in Containers . 184

10.6.2.1 Configuring iptables Modules . 184

10.6.2.2 Using conntrack Rules and NAT Tables . 185

10.7 Using SCTP in Containers and Virtual Machines . 185

10.8 Creating Configuration Files for New Linux Distributions . 185

10.9 Aligning Disks and Partitions in Virtual Machines . 187

10.9.1 Aligning Partitions . 188

10.9.2 Checking Partition Alignment in Existing Virtual Machines 188

10.9.2.1 Linux Virtual Machines . 188

10.9.2.2 Windows Virtual Machines . 189

10.9.3 Aligning Disks for Linux Virtual Machines . 190

10.9.4 Aligning Partitions for Windows Virtual Machines . 191

10.9.5 Creating a Template of a Virtual Machine with Aligned Partitions 192

10.10 Uninstalling Virtuozzo Guest Tools from Virtual Machines . 192

10.10.1 Uninstalling Guest Tools from Linux Virtual Machines . 193

10.10.2 Uninstalling Guest Tools from Windows Virtual Machines 193

10.11 Enabling Legacy VM Debug Mode . 195

10.12 Installing Optional Virtuozzo Packages . 196

10.13 Enabling Nested Virtualization in Virtual Machines . 196

10.14 Participating in Customer Experience Program . 197

11. Troubleshooting . 199

11.1 General Considerations . 199

11.2 Kernel Troubleshooting . 201

11.2.1 Using ALT+SYSRQ Keyboard Sequences . 201

11.2.2 Saving Kernel Faults (OOPS) . 202

11.2.3 Finding a Kernel Function That Caused the D Process State 203

11.3 Container Management Issues . 204

11.3.1 Failure to Start a Container . 204

ix

11.3.1.1 Solution 1 . 204

11.3.1.2 Solution 2 . 204

11.3.1.3 Solution 3 . 204

11.3.1.4 Solution 4 . 205

11.3.2 Failure to Access a Container from Network . 205

11.3.2.1 Solution 1 . 205

11.3.2.2 Solution 2 . 205

11.3.3 Failure to Log In to a Container . 205

11.3.3.1 Solution 1 . 205

11.3.3.2 Solution 2 . 206

11.4 Getting Technical Support . 206

x

CHAPTER 1

Learning Virtuozzo Basics

This chapter provides a brief description of Virtuozzo, virtual machines and containers, their specifications,

and underlying technologies.

1.1 Virtuozzo Overview
Virtuozzo is a bare-metal virtualization solution that includes container virtualization, KVM-based virtual

machines, software-defined storage along with enterprise features and production support. It runs on top of

Virtuozzo Linux, a RHEL-based Linux distribution.

Virtuozzo provides the best value for cost-conscious organizations enabling them to:

• standardize server hardware platforms,

• effectively consolidate server resources,

• consolidate and support legacy operating systems and applications,

• streamline server and application deployment, maintenance, and management,

• simplify software testing and development,

• optimize server and application availability.

1

Chapter 1. Learning Virtuozzo Basics

1.2 Differences between Virtuozzo and
OpenVZ
OpenVZ is a free, open-source virtualization solution available under GNU GPL. OpenVZ is the base for

Virtuozzo, the commercial solution that builds on OpenVZ and offers additional benefits to customers.

Compared to OpenVZ, Virtuozzo has the following extra features and differences:

• container and virtual machine backups,

• software-defined storage,

• ReadyKernel,

• additional memory policies for vcmmd,

• technical support,

• different installer,

• different default package set.

1.3 OS Virtualization Layer
This section provides detailed information on the OS virtualization layer responsible for providing support

for Virtuozzo containers.

1.3.1 Basics of OS Virtualization

The OS virtualization allows you to virtualize physical servers on the operating system (kernel) layer. The

diagram below shows the basic architecture of OS virtualization.

2

https://openvz.org/
https://readykernel.com/
https://docs.virtuozzo.com/virtuozzo_7_users_guide/advanced-tasks/configuring-automatic-memory-management-policies.html

1.3. OS Virtualization Layer

The OS virtualization layer ensures isolation and security of resources between different containers. The

virtualization layer makes each container appear as a standalone server. Finally, the container itself houses

its own applications and workload. OS virtualization is streamlined for the best performance, management,

and efficiency. Its main advantages are the following:

• Containers perform at levels consistent with native servers. Containers have no virtualized hardware

and use native hardware and software drivers.

• Each container can seamlessly scale up to the resources of an entire physical server.

• OS virtualization technology provides the highest density available from a virtualization solution. You

can create and run hundreds of containers on a standard production physical server.

• Containers use a single OS, making it extremely simple to maintain and update across containers.

Applications may also be deployed as a single instance.

1.3.2 Virtuozzo Containers

From the point of view of applications and container users, each container is an independent system. This

independence is provided by the Virtuozzo OS virtualization layer. Note that only a negligible part of the CPU

resources is spent on virtualization. The main features of the virtualization layer implemented in Virtuozzo

are the following:

• A container looks like a normal Linux system. It has standard startup scripts; software from vendors

can run inside containers without any modifications or adjustment.

• A user can change any configuration file and install additional software inside containers.

• Containers are fully isolated from each other (file system, processes, sysctl variables).

3

Chapter 1. Learning Virtuozzo Basics

• Containers share dynamic libraries, which greatly saves memory.

• Processes belonging to a container are scheduled for execution on all available CPUs. Consequently,

containers are not bound to only one CPU and can use all available CPU power.

The two key parts of any container are the contents and configuration. By default, all container files are

stored in the /vz/private/<UUID> directory on the hardware node, also called private area.

File Name Description

/vz/private/<UUID> Container private area.

/vz/private/<UUID>/root.hdd/root.hdd Virtual hard disk with container contents. The maximum

size of the virtual hard disk is 50 TB.

/vz/root/<UUID> Container mount point.

ve.conf Container configuration file:

• Is symlinked to /etc/vz/conf/<UUID>.conf

• Defines container parameters, such as allocated

resource limits, IP address and hostname, and so on.

• Overrides matching parameters in the global

configuration file.

All container files are stored in a single image (/vz/private/<UUID>/root.hdd/root.hdd), similar to a virtual

machine’s hard disk. Such standalone nature:

• Enables easier migrations and backups due to a faster sequential I/O access to container images than

to separate container files.

• Removes the need for OS and application templates once a container is created.

• Allows the use of native Linux disk quotas that are journaled and does not require quota recalculation

after disasters like server crashes.

....

Note: Using containers that store all files in an image file (also known as containers with the

container-in-an-image-file layout) is supported only for /vz partitions formatted as ext4.

1.3.2.1 Virtuozzo Container Hardware

A container may have the following virtual hardware:

4

1.3. OS Virtualization Layer

Hardware Theoretical Certified

CPU Up to the total number of threads on

the host

Up to 64

RAM Up to total amount of physical RAM on

the host

Up to 1 TB

Disk drives Up to 15: hard disk drives mapped to QCOW2 image files and DVD drives mapped

to ISO image files, up to 50 TB each

Network Interfaces Up to 15

1.3.3 Memory and IOPS Deduplication

Virtuozzo provides memory and IOPS deduplication that helps save memory and IOPS on the server and

increases the maximum number of running containers per server.

Deduplication is provided by Virtuozzo File Cache which includes the pfcached daemon and a ploop image

mounted to a directory on the server. The file cache ploop contains copies of eligible files located inside

containers. To be eligible for caching, files in containers must meet certain configurable requirements, e.g.,

be read in a certain number of containers, be of certain size, be stored in certain directories in containers.

When the kernel gets a request to read a file located in a container ploop, it searches the file cache ploop for

a copy of that file by the SHA1 hash stored as file’s extended attribute. If successful, the copy in the file cache

ploop is read instead of the original file in the container ploop. Otherwise, the original file in the container

ploop is read.

To populate the file cache ploop with most requested files, pfcached periodically obtains container files read

statistics from kernel, analyzes it, and copies files which are eligible to the file cache ploop. If the file cache

ploop is running out of space, the least recently used files are removed from it.

Virtuozzo File Cache offers the following benefits:

• Memory deduplication. Only a single file from the file cache ploop needs to be loaded to memory

instead of loading multiple identical files located in multiple containers.

• IOPS deduplication. Only a single file from the file cache ploop needs to be read instead of reading

multiple identical files located in multiple containers.

If the physical server has storage drives of various performance, e.g., IDE and SSD, the file cache ploop

performs better if located on the fastest storage drive on the node, e.g., SSD. In any case:

5

Chapter 1. Learning Virtuozzo Basics

• If the server memory is not overcommitted, the file cache mostly helps speed up container start during

which most files are read. In this case caches residing in memory are not cleaned often, so copies in the

file cache ploop, once read during container start, do not need to be reread often during container

operation.

• If the server memory is overcommitted, Virtuozzo File Cache helps speed up both container start and

operation. In this case, caches residing in memory may be cleaned often, so files in the file cache ploop

need to be reread as often.

Virtuozzo File Cache can be managed with the pfcache utility.

1.3.4 Templates

A template (or a package set) in Virtuozzo is a set of original application files repackaged for use by Virtuozzo.

Usually, it is just a set of RPM packages for Red Hat like systems. Virtuozzo provides tools for creating

templates, installing, upgrading, adding them to and removing them from a container.

Using templates lets you:

• Share RAM among similar applications running in different containers to save hundreds of megabytes

of memory.

• Deploy applications simultaneously in many containers.

• Use different versions of an application in different containers (for example, perform upgrades only in

certain containers).

There are two types of templates: OS and application.

• An OS template is an operating system and the standard set of applications to be found right after the

installation. Virtuozzo uses OS templates to create new containers with a preinstalled operating system.

• An application template is a set of repackaged software packages optionally accompanied with

configuration scripts. Application templates are used to add extra software to existing containers.

For example, you can create a container on the basis of the redhat OS template and add the MySQL

application to it with the help of the mysql template.

6

1.4. Hardware Virtualization Layer

1.4 Hardware Virtualization Layer
This section familiarizes you with the second component of Virtuozzo—the hardware virtualization layer.

This layer provides the necessary environment for creating and managing virtual machines.

1.4.1 Hardware Virtualization Basics

Virtuozzo is based on the concept of hardware virtualization. Hardware virtualization has a base layer—a

hypervisor. This layer is loaded directly on the bare server and acts as an intermediary between the server

hardware and virtual machines. To allocate hardware and resources to virtual machines, Virtuozzo virtualizes

all hardware on the server. Once virtualized, hardware and resources can be easily assigned to virtual

machines. With its virtual hardware, a virtual machine runs its own complete copies of an operating system

and applications.

The following diagram shows the basic architecture of hardware virtualization.

Specifically, Virtuozzo uses the KVM/QEMU hypervisor and manages virtual machines via the libvirt API.

Hardware virtualization enables you to:

• Create multiple virtual machines with different operating systems on a single physical host.

• Run multiple guest operating systems and their applications simultaneously on a single physical host

without rebooting.

• Consolidate and virtualize the computing environment, reduce hardware costs, lower operating

expenses, and increase productivity.

7

Chapter 1. Learning Virtuozzo Basics

• Use open APIs and SDK for integration with in-house and third-party applications.

1.4.2 Virtuozzo Virtual Machines

From the standpoint of applications and virtual machine users, each virtual machine (VM) is an independent

system with an independent set of virtual hardware. This independence is provided by the Virtuozzo

hardware virtualization layer. The main features of the virtualization layer are the following:

• A virtual machine resembles and works like a regular computer. It has its own virtual hardware.

Software applications can run in virtual machines without any modifications or adjustment.

• Virtual machine configuration can be changed easily (e.g., adding new virtual disks or increasing RAM).

• Virtual machines are fully isolated from each other (file system, processes, sysctl variables) and the

Virtuozzo host.

• A virtual machine can run any supported guest operating system. The guest OS and its applications are

isolated inside a virtual machine and share physical hardware resources with other virtual machines.

1.4.2.1 Intel Virtualization Technology Support

Virtuozzo provides support for Intel virtualization technologies comprising a set of processor enhancements

and improving the work of virtualization solutions. Utilizing these technologies, Virtuozzo can offload some

workload to the system hardware, which results in the “near native” performance of guest operating systems.

1.4.3 Virtual Machine Hardware

A Virtuozzo virtual machine works like a usual standalone computer.

By default, virtual machines are created with the following virtual hardware:

• 1 VirtIO SCSI HDD, expanding,

• 1 CD-ROM (IDE for Windows and Debian guests, VirtIO SCSI for Linux guests except Debian),

• 1 VirtIO network adapter, bridged,

• 32MB video card.

Other hardware added to a default VM may depend on the chosen distribution (see Creating Virtual Machines

8

1.4. Hardware Virtualization Layer

on page 15).

The complete range of virtual hardware a virtual machine can have is provided in the table below.

CPU Up to 64

RAM Up to 1 TB

Video Adapter VGA/SVGA video adapter with VBE 3.0

Video RAM Up to 256 MB of video memory

Floppy Disk Drive 1.44 MB floppy disk drive mapped to an image file

IDE Devices Up to 4 IDE devices:

• hard disk drives mapped to QCOW2 image files (up to 16 TB

each)

• DVD drives mapped to ISO image files

SCSI Devices Up to 15 SCSI devices:

• hard disk drives mapped to QCOW2 image files (up to 16 TB

each)

• DVD drives mapped to ISO image files

VirtIO Devices Up to 15 VirtIO hard disk drives mapped to QCOW2 image files (up to

16 TB each)

Network Interfaces Up to 15 VirtIO (default), Intel 82545EM, or Realtek RTL8029 virtual

network adapters.

Serial (COM) Ports Up to 4 serial (COM) ports mapped to a socket, a real port, or an

output file

Keyboard Generic USB or PS/2 keyboard

Mouse Generic USB or PS/2 wheel mouse

1.4.4 Virtual Machine Files

A virtual machine has at least two files: a configuration file (PVS file) and a hard disk image file (HDD file). It

can also have additional files: a file for each additional virtual hard disk and output files for virtual ports. By

default, the virtual machines files are stored in the /vz/vmprivate/<UUID> directory on the Virtuozzo server.

The list of files related to a virtual machine is given in the table below:

9

Chapter 1. Learning Virtuozzo Basics

File Name Description

.pvs Virtual machine configuration file. It defines the hardware and resources configuration

of the virtual machine. The configuration file is automatically generated during the

virtual machine creation.

.sav Dump file created when you suspend the virtual machine. This file contains the state of

the virtual machine and its applications at the moment the suspend was invoked.

.mem Memory dump file for the suspended virtual machine. For a running virtual machine, it

is a temporary virtual memory file.

.hdd Hard disk image in QCOW2 format. When you create a virtual machine, you can create

it with a new virtual hard disk or use an existing one. A virtual machine can have

multiple hard disks.

.iso CD/DVD disc image. Virtual machines treat ISO images as real CD/DVD discs.

.txt Output files for serial ports. The output .txt files are generated when a serial port

connected to an output file is added to the virtual machine configuration.

1.4.5 Support of Virtual and Real Media

This section lists the types of disks that can be used by Virtuozzo virtual machines and provides the

information about basic operations you can perform on these disks.

1.4.5.1 Supported Types of Hard Disks

Virtuozzo virtual machines can use only virtual hard disks image files as their hard disks.

1.4.5.2 Virtual Hard Disks

The capacity of a virtual hard disk can be set from 100 MB to 16 TB.

Virtuozzo uses expanding virtual hard disks. The image file of such a disk is initially small in size (smaller than

the set virtual disk size) and grows as data is added to the disk in the guest OS.

1.4.5.3 CD/DVD Disc Images

Virtuozzo can use only CD/DVD disc images that are supported by the guest OS.

10

1.5. Virtuozzo Configuration

1.5 Virtuozzo Configuration
Virtuozzo allows you to configure settings for the physical server in general and for each container in

particular. Among these settings are disk and user quotas, network parameters, default file locations, sample

configuration files, and other.

Virtuozzo stores all OS virtualization-related configuration information in the global configuration file

/etc/vz/vz.conf. It defines container parameters like the default OS templates, disk quotas, logging, and so

on.

The configuration file is read when the Virtuozzo software and/or containers are started. However, many

settings can also be changed on the fly by means of Virtuozzo standard utilities like prlctl, with or without

modifying the corresponding configuration file to keep the changes for the future.

1.6 Resource Management
Virtuozzo resource management controls the amount of resources available to virtual machines and

containers. The controlled resources include such parameters as CPU power, disk space, a set of

memory-related parameters. Resource management allows you to:

• effectively share available physical server resources among virtual machines and containers

• guarantee Quality-of-Service in accordance with a service level agreement (SLA)

• provide performance and resource isolation and protect from denial-of-service attacks

• simultaneously assign and control resources for a number of virtual machines and containers

• collect usage information for system health monitoring

Resource management is much more important for Virtuozzo than for a standalone server since server

resource utilization in such a system is considerably higher than that in a typical system.

1.7 Understanding Licensing
To start using Virtuozzo, you need a Virtuozzo license. You must install this license on your server after or

during Virtuozzo installation. Every physical server hosting virtual machines and containers must have its

11

Chapter 1. Learning Virtuozzo Basics

own license. Licenses are issued by Virtuozzo and define a number of parameters in respect of your physical

server. The main licensed parameters are listed below:

• The number of physical CPUs which can be installed on the physical server. That is, a dual core or

hyperthreading processor is regarded as one CPU.

• The license expiration date. A license can be time-limited or permanent. Virtuozzo licenses have a start

date, and if they are time-limited, can also have an expiration date specified in them. You must set up

your system clock correctly. Otherwise, the license validation may fail.

• The number of virtual machines and containers that can simultaneously run on the physical server.

• The platform and architecture with which Virtuozzo is compatible.

For instructions on how to install, update, view, and transfer licenses, see Managing Licenses on page 133.

1.8 Physical Server Availability Considerations
The availability of a physical server running Virtuozzo is more critical than the availability of a typical PC

server. Since it runs multiple virtual machines and containers providing a number of critical services, physical

server outage might be very costly. It can be as disastrous as the simultaneous outage of a number of

servers running critical services.

To increase physical server availability, we suggest that you follow the recommendations below:

• Use a RAID storage for critical virtual machines and containers. Do prefer hardware RAIDs, but software

mirroring RAIDs might suit too as a last resort.

• Do not run any software on the server itself. Create special virtual machines and containers where you

can host necessary services such as BIND, FTPD, HTTPD, and so on. On the server, you need only the

SSH daemon. Preferably, it should accept connections from a pre-defined set of IP addresses only.

• Do not create users on the server itself. You can create as many users as you need in any virtual

machine and container. Remember: compromising the server means compromising all virtual

machines and containers as well.

12

CHAPTER 2

Managing Virtual Machines and
Containers

This chapter describes how to perform day-to-day operations on virtual machines and containers.

2.1 Creating Virtual Machines and Containers
This section explains how to create new Virtuozzo virtual machines and containers using the prlctl create

command. The options you should pass to this command differ depending on whether you want to create a

virtual machine or container.

2.1.1 Choosing OS EZ Templates for Containers

Before creating a container, you need to choose an OS EZ template it will be based on.

2.1.1.1 Listing OS EZ Templates

To find out which OS EZ templates are already installed on the hardware node and cached (i.e. ready to be

used), you can use the vzpkg list command. For example:

vzpkg list -O
centos-6-x86_64 2012-05-10 13:16:43

The timestamp next to an OS EZ template indicates when the template was cached.

13

Chapter 2. Managing Virtual Machines and Containers

Adding the -O option to the vzpkg list command, you can list only those OS EZ templates which are installed

but not cached. You can also add the --with-summary option to display brief template descriptions:

vzpkg list -O --with-summary
centos-6-x86_64 :CentOS 6 (for Intel EM64T) EZ OS Template

2.1.1.2 Installing and Caching OS EZ Templates

Some of the supported OS EZ templates may not be preinstalled, so you may need to perform additional

steps before you can create containers based on these templates. To list templates available for installation

in the official remote repositories, run the following command:

vzpkg list --available
fedora-23-x86_64 factory
sles-11-x86_64 factory
sles-12-x86_64 factory
suse-42.1-x86_64 factory
suse-42.2-x86_64 factory
vzlinux-6-x86_64 factory

To prepare a template for container creation, do the following:

1. Install the template package. For example:

vzpkg install template sles-11-x86_64

2. Configure additional template parameters if needed. Some of the EZ templates may require specific

preparation steps that depend on the operating system. To prepare, for example, a SLES 11 template

for container creation, you additionally need to set the $RCE parameter and SUSE repository credentials

(obtained from the SUSE Customer Center) in the /etc/vztt/url.map file:

$RCE %24RCE
$SLES11_PASS <password>
$SLES11_USER <user>

3. Create the template cache:

vzpkg create cache sles-11-x86_64

Now you can create containers based on the prepared template.

2.1.2 Creating Containers

To create a container, use the prlctl create command as follows:

14

https://scc.suse.com/login

2.1. Creating Virtual Machines and Containers

prlctl create MyCT --vmtype ct

Virtuozzo will create a new container with the name MyCT using the default parameters from the global

configuration file /etc/vz/vz.conf.

If you want to create a container with a guest OS different from the default specified in the global

configuration file, add the --ostemplate option after the prlctl create command. For example:

prlctl create MyCT --vmtype ct --ostemplate centos-6-x86_64

All container contents will be stored in this container’s private area. To find out where the private area is

located, use the prlctl list command as follows:

prlctl list MyCT -i | grep "Home"
Home: /vz/private/26bc47f6-353f-444b-bc35-b634a88dbbcc

....

Note:

1. The first time you install an operating system in a container, its cache is created. To create a cache,

you need to have an active Internet connection to access repositories that contain packages for the

respective operating system. You can also set up a local package repository and use this repository

to provide packages for your operating system. A local package repository is also required for

some commercial distributions (e.g., for Red Hat Enterprise Linux).

2. For information on creating containers with preinstalled applications, see Using Golden Image

Functionality on page 172.

2.1.3 Creating Virtual Machines

Creating a new virtual machine means creating a VM configuration based on a distribution you specified. To

create VMs, use the prlctl create command. For example:

prlctl create MyVM --distribution centos7 --vmtype vm

This command creates a configuration for a virtual machine MyVM, adjusts it for running the CentOS 7 guest

OS, and places all the required files in the /vz/vmprivate/<UUID> directory.

Once the virtual machine configuration is ready, you will need to install a supported guest OS in it (e.g., via

VNC as described in Enabling VNC Access to Virtual Machines on page 182).

15

Chapter 2. Managing Virtual Machines and Containers

....

Note: Before installing Windows Server 2012 (not R2) in a virtual machine, you need to manually

mount the floppy_win8.vfd image file with the needed drivers by running the prlctl set --device set

ffd0 --image <path_to_file> command. In Virtuozzo 7.0.4 (Update 4), the image is located in the

/usr/share/vz-guest-tools directory, so the command is prlctl set --device set ffd0 --image

/usr/share/vz-guest-tools/floppy_win8.vfd.

When choosing a distribution to install, have in mind that Virtuozzo supports VM guest initialization via

cloud-init, so you can perform some of the initial configuration tasks on stopped virtual machines. To be able

to use this feature, you can install a “cloud-enabled” distribution instead of a regular one. For more

information, see Using cloud-init for Virtual Machine Guest Initialization on page 18.

2.1.4 Supported Guest Operating Systems

The following guest operating systems have been tested and are supported in virtual machines and

containers.

2.1.4.1 Virtual Machines

• Windows Server 2016

• Windows Server 2012 R2

• Windows Server 2012

• Windows Server 2008 R2 with Service Pack 1

• CentOS 7.x (x64)

• CentOS 6.x (x64)

• Debian 9.x (x64)

• Debian 8.x (x64)

• Ubuntu 18.04 (x64)

• Ubuntu 17.10 (x64)

• Ubuntu 16.04 LTS (x64)

• Ubuntu 14.04 LTS (x64)

16

2.2. Performing Initial Configuration of Virtual Machines and Containers

• Virtuozzo Linux 7.x (x64)

• CloudLinux 7.x (x64)

• CloudLinux 6.x (x64)

2.1.4.2 Containers

• CentOS 7.x (x64)

• CentOS 6.x (x64)

• Debian 9.x (x64)

• Debian 8.x (x64)

• Ubuntu 18.04 (x64)

• Ubuntu 17.10 (x64)

• Ubuntu 16.04 LTS (x64)

• Ubuntu 14.04 LTS (x64)

• Virtuozzo Linux 7.x (x64)

• Virtuozzo Linux 6.x (x64)

• openSUSE 42.x (x64)

• SUSE Linux Enterprise Server 12 Service Pack 1 (x64)

• SUSE Linux Enterprise Server 11 Service Pack 1, 2, 3, 4 (x64)

2.2 Performing Initial Configuration of Virtual
Machines and Containers
Before you start using a newly created virtual machine or container, you will need to configure it. This section

describes the main configuration steps.

17

Chapter 2. Managing Virtual Machines and Containers

2.2.1 Using cloud-init for Virtual Machine Guest Initialization

Virtuozzo supports VM guest initialization via cloud-init, so you can perform some of the initial configuration

tasks described further in this section on stopped virtual machines. The supported tasks are: installing guest

tools, setting user names and passwords, and configuring network settings.

The changes resulting from performing the above tasks are not applied to the VM immediately but rather

saved as instructions to be carried out when the guest OS with cloud-init is loading. So when you run a

corresponding command (e.g., prlctl set --userpasswd), the following happens: the bundled image with

cloud-init instructions is copied to the VM home path, a CD-ROM device is added to the VM, and the image is

mounted to said CD-ROM. However, the changes (e.g., to the user name and password) will only be applied

after you install and start loading the guest OS.

As mentioned above, you will need cloud-init installed in a guest OS for the feature to work. For Linux guests,

the easiest way to get cloud-init is to install a “cloud-enabled” distribution that already comes with it. You can

also install cloud-init manually (e.g., by running yum install cloud-init on CentOS 7). For Windows guests,

you can create your own distributions with cloud-init or install it manually. The Windows version is available

at https://cloudbase.it/cloudbase-init/.

2.2.2 Installing Virtuozzo Guest Tools

Virtuozzo guest tools enable you to configure running virtual machines from the physical host. With tools you

can:

• Run commands in VMs with the prlctl exec command.

• Set passwords for users in VMs with the prlctl set --userpasswd command. If the user does not exist,

it will be created.

• Obtain and change VM network settings.

In addition, installing Virtuozzo guest tools schedules weekly automatic “trimming” of filesystems in Linux

guests by means of the fstrim service. It reclaims unused storage space by discarding data blocks unused by

VM’s filesystem. If you disable the service, it will not be re-enabled by future updates of Virtuozzo guest tools.

In Windows guests, Storage Optimizer does the same periodic job by default.

18

https://cloudbase.it/cloudbase-init/

2.2. Performing Initial Configuration of Virtual Machines and Containers

....

Note: If a node is in a Virtuozzo Storage cluster that provides data redundancy by replication,

automatic compacting (trimming) of the filesystem(s) that store data replicas is disabled. In case data

redundancy is provided by erasure coding, trimming is enabled.

It is recommended to have cloud-init installed in the guest OS (see the previous section). In this case, you

only need to do the following:

1. Mount the guest tools image shipped with Virtuozzo to the virtual machine’s optical drive. For example:

prlctl installtools MyVM

2. Start the virtual machine:

prlctl start MyVM

Cloud-init will install the guest tools automatically.

If a VM guest OS does not have cloud-init, you can install Virtuozzo guest tools either automatically or

manually.

To install the guest tools automatically without cloud-init:

1. Make sure these requirements are met:

• The vz-guest-tools-updater package is installed on the node.

• In the /etc/vz/tools-update.conf file, the InstallTools parameter is set to true (default).

• The virtual machine has the --tools-autoupdate parameter set to on (default).

2. Stop the virtual machine before installing the guest tools:

prlctl stop MyVM

3. Start vz-guest-tools-updater for the VM:

vz-guest-tools-updater MyVM

4. Start the virtual machine:

prlctl start MyVM

Once the VM is launched, the vz-guest-tools-updater tool will start installing Virtuozzo guest tools, which can

take several minutes.

....

Important: During installation, Virtuozzo guest tools image is forcibly mounted to VM’s optical disk

drive even if it is already in use.

19

Chapter 2. Managing Virtual Machines and Containers

To install the guest tools manually without cloud-init:

1. Mount the guest tools image shipped with Virtuozzo to the virtual machine’s optical drive. For example:

prlctl installtools MyVM

2. Log in to the virtual machine and do the following:

• Inside a Linux VM, create a mount point for the optical drive with the guest tools image and run the

installer:

mount /dev/cdrom /mnt/cdrom
bash /mnt/cdrom/install

• Inside a Windows VM, if autorun is enabled, launch the installer in the AutoPlay window.

Otherwise right-click the optical drive in Explorer and click Install Virtuozzo Tools.

20

2.2. Performing Initial Configuration of Virtual Machines and Containers

....

Note:

1. Virtuozzo guest tools rely on QEMU guest agent which is installed alongside the tools. The agent

daemon/service (qemu-ga) must be running for the tools to work.

2. If you find out that Virtuozzo guest tools are incompatible with some software inside a virtual

machine, you can uninstall them from that VM (for details, refer to Uninstalling Virtuozzo Guest Tools

from Virtual Machines on page 192).

2.2.3 Configuring Network Settings

To make virtual machines and containers accessible from the network, you need to assign valid IP addresses

to them and configure DNS servers. The session below illustrates setting these parameters for the virtual

machine MyVM and the container MyCT:

• Assigning IPv4 and IPv6 addresses:

prlctl set MyVM --device-set net0 --ipadd 10.0.186.100/24
prlctl set MyVM --device-set net0 --ipadd 1fe80::20c:29ff:fe01:fb07
prlctl set MyCT --ipadd 10.0.186.101/24
prlctl set MyCT --ipadd fe80::20c:29ff:fe01:fb08

net0 in the commands above denotes the network card in the virtual machine to assign the IP address

to. You can view all network cards of a virtual machine using the prlctl list <VM_name> -i command.

• Setting DNS server addresses:

prlctl set MyVM --nameserver 192.168.1.165
prlctl set MyCT --nameserver 192.168.1.165

....

Note:

1. You can configure the network settings only for virtual machines that have Virtuozzo guest tools

installed.

2. To assign network masks to containers operating in the venet0 network mode, you must set the

USE_VENET_MASK parameter in the /etc/vz/vz.conf configuration file to yes.

21

Chapter 2. Managing Virtual Machines and Containers

2.2.4 Setting Passwords for Virtual Machines and Containers

In Virtuozzo, you can use the --userpasswd option of the prlctl set command to create new accounts in your

virtual machines and containers directly from the hardware node. The created account can then be used to

log in to the virtual machine or container. The easiest way of doing it is to run this command:

prlctl set MyCT --userpasswd user1:2wsx123qwe

This command creates the user1 account in the container MyCT and sets the 2wsx123qwe password for it. Now

you can log in to the container as user1 and administer it in the same way you would administer a standalone

server: install additional software, add users, set up services, and so on.

The prlctl set command can also be used to change passwords for existing accounts in your virtual

machines and containers. For example, to change the password for user1 in the container MyCT to 0pi65jh9,

run this command:

prlctl set MyCT --userpasswd user1:0pi65jh9

When setting passwords for virtual machines and containers, keep in mind the following:

• You can manage user accounts only inside virtual machines that have Virtuozzo guest tools installed.

• You should use passwords that meet the minimum length and complexity requirements of the

respective operating system. For example, for Windows Server 2008, a password must be more than six

characters in length and contain characters from three of the following categories: uppercase

characters, lowercase characters, digits, and non-alphabetic characters.

• You should not create accounts with empty passwords for virtual machines and containers running

Linux operating systems.

2.2.5 Setting Startup Parameters

The prlctl set command allows you to define the autostart startup parameter for virtual machines and

containers. Setting this parameter to onmakes your virtual machine or container automatically boot at the

physical server startup. For example, to enable the container MyCT and the virtual machine MyVM to

automatically start on your server boot, you can execute the following commands:

• For the container MyCT:

prlctl set MyCT --autostart on

• For the virtual machine MyVM:

22

2.3. Starting, Stopping, Restarting, and Querying Status of Virtual Machines and Containers

prlctl set MyVM --autostart on

Notice that the autostart parameter will have effect only on the next server startup.

2.3 Starting, Stopping, Restarting, and
Querying Status of Virtual Machines and
Containers
After a virtual machine or container has been created, it can be managed like a usual computer.

2.3.1 Starting Virtual Machines and Containers

You can start virtual machines and containers with the prlctl start command. For example:

• To start the container MyCT:

prlctl start MyCT

• To start the virtual machine MyVM:

prlctl start MyVM

2.3.2 Stopping Virtual Machines and Containers

You can stop virtual machines and containers with the prlctl stop command. For example:

• To stop the container MyCT:

prlctl stop MyCT

• To stop the virtual machine MyVM:

prlctl stop MyVM

2.3.3 Restarting Virtual Machines and Containers

You can restart virtual machines and containers with the prlctl restart command. For example:

23

Chapter 2. Managing Virtual Machines and Containers

• To restart the container MyCT:

prlctl restart MyCT

• To restart the virtual machine MyVM:

prlctl restart MyVM

....
Note: Restarting virtual machines requires a guest OS and Virtuozzo guest tools to be installed.

2.3.4 Checking Status of Virtual Machines and Containers

You can check the status of a virtual machine or container with the prlctl status command. For example:

• To check the status of the container MyCT:

prlctl status MyCT
CT MyCT exists running

• To check the status of the virtual machine MyVM:

prlctl status MyVM
Vm MyVM exists stopped

2.4 Listing Virtual Machines and Containers
To get an overview of the virtual machines and containers existing on the physical server and to get

additional information about them—their IP addresses, hostnames, current resource consumption, and so

on—use the prlctl list command. In the most general case, you can get a list of all virtual machines and

containers by issuing the following command:

prlctl list -a
UUID STATUS IP_ADDR T NAME
{600adc12-0e39-41b3-bf05-c59b7d26dd73} running 10.10.1.101 CT MyCT
{b2de86d9-6539-4ccc-9120-928b33ed31b9} stopped 10.10.100.1 VM MyVM

The -a option shows all—both running and stopped—VMs and containers (only running VMs and containers

are shown by default). The default columns include VM and container UUIDs, status, type, IP addresses, and

names. The list of columns can be customized with the -o option. For example:

prlctl list -a -o name,ctid
NAME UUID

24

2.5. Cloning Virtual Machines and Containers

MyCT {26bc47f6-353f-444b-bc35-b634a88dbbcc}
MyVM {b8cb6d99-1af1-453d-a302-2fddd8f86769}

....
Note: To see a list of all columns, run prlctl list -L.

2.5 Cloning Virtual Machines and Containers
You can create a copy (clone) of a particular virtual machine or container that will have identical data and

resource parameters. Cloning may save time as clones require little reconfiguration compared to setting up

new virtual machines or containers.

You can clone stopped virtual machines and stopped and running containers. For example:

prlctl clone MyCT --name MyCT_clone
prlctl clone MyVM --name MyVM_clone

The --name option specifies a name for the clone.

When cloning Windows virtual machines, consider changing their security identifiers (SIDs) with the

--changesid option.

Successfully cloned virtual machines and containers will be shown in the list of virtual environments on the

host. For example:

prlctl list -a
UUID STATUS IP_ADDR T NAME
{62951c2a-...} stopped 10.30.10.101 CT MyCT
{49b66605-...} stopped 10.30.10.101 CT MyCT_clone
{7f4904ad-...} stopped 10.30.128.115 VM MyVM
{2afb2aa2-...} stopped 10.30.128.134 VM MyVM_clone

The example above shows that the cloned container has the same IP address as the original container.

Before starting to use the clones, make sure their IP addresses are unique (for instructions on how to assign

IP addresses to VMs and containers, see Configuring Network Settings on page 21).

2.5.1 Creating Linked Clones

Starting from Virtuozzo 7.0.7 (Update 7), you can create linked clones of virtual machines. A linked clone is a

copy of a virtual machine that shares virtual disks with the original virtual machine. Linked clones take less

time and disk space to deploy as they store only changes to the original disks rather than copy them whole. A

25

Chapter 2. Managing Virtual Machines and Containers

linked clone cannot run without access to its parent, so make sure the original virtual machine is available

and its disks are not corrupted.

To create a linked clone, add the --linked option to the prlctl clone command. For example:

prlctl clone MyVM --name MyVM_linked_clone --linked

On the host, linked clones are shown as usual virtual machines. For example:

prlctl list -a
UUID STATUS IP_ADDR T NAME
{7f4904ad-...} stopped 10.30.128.115 VM MyVM
{2e9862f6-...} stopped 10.30.128.135 VM MyVM_linked_clone

....
Note: Migration, backup, restore, and unlink operations are not supported for linked clones.

2.5.2 Configuring Default Directories

When cloning a virtual machine or container, you can also override the following default directories:

• default directory /vz/vmprivate/<dest_UUID> storing the files of a cloned virtual machine (where

<dest_UUID> denotes the UUID of the resulting virtual machine). To store the files of the MyVM_clone

virtual machine in a custom directory, you can run the following command:

prlctl clone MyVM --name MyVM_clone --dst vz/vmprivate/customVMs

In this case all virtual machine files will be placed to the /customVMs directory. Note that the specified

directory must exist on the server; otherwise, the command will fail.

• default directory /vz/private/<dest_UUID> defining the container private area (where <dest_UUID>

denotes the UUID of the resulting container). To define a custom private area path for the container

MyCT_clone, you can execute the following command:

prlctl clone MyCT1 --name MyCT_clone --dst /vz/private/customCTs

....

Note: The default /vz/vmprivate and /vz/private are valid for servers that do not participate in

Virtuozzo storage clusters.

26

2.6. Suspending Virtual Machines and Containers

2.6 Suspending Virtual Machines and
Containers
Virtuozzo allows you to suspend a running virtual machine or container on the physical server by saving its

current state to a special file. Later on, you can resume the virtual machine or container and get it in the same

state the virtual machine or container was at the time of its suspending. Suspending your virtual machines

and containers may prove useful, for example, if you need to restart the physical server, but do not want to:

• quit the applications currently running in the virtual machine or container

• spend much time on shutting down the guest operating system and then starting it again

You can use the prlctl suspend command to save the current state of a virtual machine or container . For

example, you can issue the following command to suspend the container MyCT:

prlctl suspend MyCT

At any time, you can resume the container MyCT by executing the following command:

prlctl resume MyCT

Once the restoration process is complete, any applications that were running in the container MyCT at the

time of its suspending will be running again and the information content will be the same as it was when the

container was suspended.

2.7 Running Commands in Virtual Machines
and Containers
Virtuozzo allows you to execute arbitrary commands inside virtual machines and containers by running them

on the physical server, i.e. without the need to log in to the respective virtual machine or container. For

example, this can be useful in these cases:

• If you do not know the virtual machine or container login information, but need to run some diagnosis

commands to verify that it is operational.

• If the virtual machine or container has no network access.

27

Chapter 2. Managing Virtual Machines and Containers

In both cases, you can use the prlctl exec command to run a command inside the respective virtual

machine or container. By default, running prlctl exec <command> is equivalent to executing bash -c

<command> in a Linux VM or container or cmd /c <command> in a Windows VM. Adding the --without-shell

option allows running commands directly without the shell.

The session below illustrates the situation when you run the stopped SSH daemon inside a Linux virtual

machine with the name of My_Linux:

prlctl exec My_Linux /etc/init.d/sshd status
openssh-daemon is stopped
prlctl exec My_Linux /etc/init.d/sshd start
Starting sshd: [OK]
prlctl exec My_Linux /etc/init.d/sshd status
openssh-daemon (pid 26187) is running...

....

Note:

1. You can use the prlctl exec command only inside virtual machines that have Virtuozzo guest tools

installed.

2. The prlctl exec command is executed inside a virtual machine or container from the / directory

rather than from /root.

2.8 Deleting Virtual Machines and Containers
You can delete a virtual machine or container that is not needed anymore using the prlctl delete command.

Note that you cannot delete a running or mounted virtual machine or container. The example below

illustrates deleting the running container MyCT:

prlctl delete MyCT
Removing the CT...
Failed to remove the CT: Unable to complete the operation. This operation cannot \
be completed because the virtual machine "{4f27f27f-c056-4a65-abf6-27642b6edd21}"\
is in the "running" state.
prlctl stop MyCT
Stopping the CT...
The CT has been successfully stopped.
prlctl delete MyCT
Removing the CT...
The CT has been successfully removed.

28

2.9. Viewing Detailed Information About Virtual Machines and Containers

2.9 Viewing Detailed Information About Virtual
Machines and Containers
To view detailed information about a virtual machine or container, you can use the prlctl list -i

command. For example, the following command lists all information about the virtual machine MyVM:

prlctl list -i MyVM

The following table describes the main options displayed by prlctl list -i.

Option Description

ID Virtual machine identifier. Usually, you use this ID, along with the virtual

machine name, when performing an operation on the virtual machine.

EnvID Kernel virtual machine identifier. This is the ID the kernel on the physical

server uses to refer to a virtual machine when displaying some information

on this virtual machine.

Name Virtual machine name.

Description Virtual machine description.

State Virtual machine state.

OS Guest operating system installed in a virtual machine.

Uptime Time that shows for how long a virtual machine has been running since

counter reset.

....

Note: The uptime counter as well as count start date and time can be

reset with the prlctl reset-uptime command.

Home Directory storing virtual machine files.

Guest tools Shows whether Virtuozzo guest tools are installed in a virtual machine.

Autostart Shows whether a virtual machine is automatically started when you turn on

the physical server.

Boot order Order in which the virtual machine devices are checked for an operating

system.

Hardware Devices available in a virtual machine.

Offline management Denotes whether the offline management feature is enabled for the virtual

machine, and if yes, lists the available offline services.

29

Chapter 2. Managing Virtual Machines and Containers

....
Note: The options prlctl list displays for containers are similar to those for virtual machines.

2.10 Managing Virtual Machine and Container
Backups
Backing up your virtual machines and containers on a regular basis is essential for system reliability.

Virtuozzo allows you to back up and restore virtual machines and containers on the local server with the

prlctl and prlsrvctl utilities.

2.10.1 Creating Virtual Machine and Container Backups

You can create backups of virtual machines and containers with the prlctl backup command. The command

is executed on the local server where the virtual machines or containers are located. The resulting backups

can be stored on either the same local server or a remote server (e.g., a dedicated backup server).

By default, an incremental backup is created that contains only the files changed since the previous full or

incremental backup. If no previous backups exist, a full backup is created. (You can also create a full backup

with the -f option.)

....

Note: For increased security during backup operations, Virtuozzo provides connection tunneling

between the local server and remote backup server. Tunneling increases backup time, so if you want to

speed up the process and do not need a secure tunnel between servers, you can disable connection

tunneling with the --no-tunnel option. To use it, configure the firewall of the destination server to allow

incoming connections on any port on the corresponding network interface.

To create a backup of the virtual machine MyVM and store it on the local server, run the following command:

prlctl backup MyVM
...
The VM has been successfully backed up with \
backup id {746dba2a-3b10-4ced-9dd6-76a2blcl4a69}

The backup UUID, like the one shown above, will be required to manage the backup in the future.

If you want to create a backup of the virtual machine MyVM and store said backup on a remote server, specify

the remote server’s IP address or hostname with the -s option, for example:

30

2.10. Managing Virtual Machine and Container Backups

prlctl backup MyVM -s 192.168.0.10

The root account is used to log in to the remote server by default, so you will be asked for the root password.

You can also provide different credentials (and port) in the format [<user>[:<passwd>]@]<server>[:<port>]].

By default, backups are placed in the /vz/vmprivate/backups directory. To set a different default backup

directory, use the prlsrvctl set --backup-path <path> command.

....

Note:

1. You can back up both running and stopped virtual machines and containers.

2. Creating a consistent backup of a running virtual machine requires the Virtuozzo guest tools to be

installed in said virtual machine.

3. You cannot back up virtual machines with attached physical HDDs, mounted ISO or floppy disk

images, etc.

2.10.2 Listing Virtual Machine and Container Backups

You can list backups on the server with the prlctl backup-list command. For example:

prlctl backup-list
ID Backup_ID Node Date Type Size

{c1dee22f...} {209d54a0...} test.com 2011-05-30 10:19:32 f 411566405
[The ID and Backup ID are reduced for better readability.]

The command output shows that currently only one backup with the ID of

209d54a0-e3b8-4a03-9ca8-d4cc7a2a27ca exists on the server. The information on the backup is presented in

the following table:

Column Description

ID Virtual machine or container UUID.

Backup_ID Backup UUID. You need to specify this ID when performing any backup-related

operations.

Node The hostname of the physical server storing the backup archive.

Date The date and time when the backup archive was created.

31

Chapter 2. Managing Virtual Machines and Containers

Column Description

Type The backup type. Currently, you can create two types of backups:

• full, f,

• incremental, i, with only the files changed since the previous full or incremental

backup. This is the default backup type.

Size The size of the backup image, in bytes.

If required, you can filter the backup list with the --vmtype ct|cm|all option that only shows backups of

containers, virtual machines, or both. To list only backups created on the local server, use the --localvms

option.

2.10.3 Restoring Virtual Machines and Containers from Backups

Local or remote backups of virtual machines and containers can be restored with the prlctl restore

command.

....

Note: For increased security during restore operations, Virtuozzo provides connection tunneling

between the backup and destination servers. Tunneling increases restore time, so if you want to speed

up the process and do not need a secure tunnel between servers, you can disable connection tunneling

with the --no-tunnel option. To use it, configure the firewall of the destination server to allow incoming

connections on any port on the corresponding network interface.

The following rules and considerations apply:

• Restore commands are run on the destination server (to which the backups will be restored).

• Only stopped virtual machines and containers can be restored from backup.

• Virtuozzo 6 backups can be restored to Virtuozzo 7 servers (with conversion to Virtuozzo 7 format).

• Backups of virtual machines and containers with guests unsupported in Virtuozzo 7 may not be

restored correctly (see Supported Guest Operating Systems on page 16).

• VZFS-based containers must be converted to ploop format and backed up again before they can be

restored to Virtuozzo 7.

32

2.10. Managing Virtual Machine and Container Backups

....

Note: If conversion of the restored VM fails, the restored VM is deleted from the destination

server and you can try again. If the second attempt also fails, you need to enable a legacy VM debug

mode on the destination Virtuozzo 7 server (see Enabling Legacy VM Debug Mode on page 195),

make another restore attempt, send the problem report, and contact the technical support team.

With the debug mode enabled, the migrated VM will not be deleted from the destination Virtuozzo

7 server after conversion failure. It will remain stopped or running with disabled network to let the

technical support team study the memory dump and find out the reason for failure.

To restore a backup of the virtual machine MyVM with the UUID a53f1184-333e-41cf-b410-2ec8ffea67d4, run

prlctl restore MyVM

or

prlctl restore a53f1184-333e-41cf-b410-2ec8ffea67d4

If multiple backups of a virtual machine exist, the latest one is restored. To restore a particular backup,

specify its ID with the -t option. For example:

prlctl restore -t 24a3011c-8667-4870-9e11-278f1398eab0

If backups are stored on a remote server and the VM or container to be restored does not exist on the

destination server, you can restore it by specifying the VM or container’s UUID or the backup UUID with the

-t option and that server’s IP address or hostname with the -s option. For example:

prlctl restore -t 24a3011c-8667-4870-9e11-278f1398eab0 -s 192.168.0.10

If the VM or container already exists on the destination server (e.g., has been restored from a remote backup

once), you can also restore its latest backup by specifying the VM or container’s name.

If necessary, you can transfer remotely stored backups to the local server and restore them locally. To do this:

1. Find out the default backup directories on the source and destination servers by running prlsrvctl

info | grep "Backup path" on each.

2. Copy backups to the default backup directory on the destination server. Or, if you keep backups on a

network storage, attach said network storage to the default backup directory on the destination server.

3. Restore the backup with the prlctl restore -t command as shown in the example above.

2.10.4 Deleting Virtual Machine and Container Backups

You can delete backups with the prlctl backup-delete command.

33

Chapter 2. Managing Virtual Machines and Containers

To remove a specific VM or container backup, provide the VM or container name or UUID as well as the

backup ID (you can find out these IDs with the prlctl backup-list command). For example:

prlctl backup-list
ID Backup_ID Node Date Type Size

{c1dee22f...} {209d54a0...} test.com 2011-05-30 10:19:32 f 411566405
[The ID and Backup ID are reduced for better readability.]
prlctl backup-delete MyVM -t 209d54a0-e3b8-4a03-9ca8-d4cc7a2a27ca --keep-chain

With the --keep-chain option specified, the remaining backup chain will be preserved after specific backups

are deleted from it.

To delete all backups of a VM or container, specify only the VM or container name or UUID:

prlctl backup-delete MyVM

2.10.5 Backing Up Entire Servers

In addition to backing up single virtual machines and containers, you can create backups of all virtual

environments on the server with the prlsrvctl backup command. For example:

prlsrvctl backup -f
Backing up the CT MyCT
...
The CT has been successfully backed up with backup id {b14ec76d-c0e2-432f-859a- \
4727c0042065}
Backing up the VM MyVM
...
The VM has been successfully backed up with backup id {746dba2a-3b10-4ced-9dd6- \
76a2blcl4a69}.

....

Note:

1. You can back up both running and stopped virtual machines and containers.

2. Creating consistent backups of running virtual machines requires the Virtuozzo guest tools to be

installed in said virtual machines.

3. You cannot back up virtual machines with attached physical HDDs, mounted ISO or floppy disk

images, etc.

34

2.10. Managing Virtual Machine and Container Backups

2.10.6 Attaching Backups to Virtual Machines and Containers

To read the contents of a virtual machine or container backup, you can attach it to a virtual machine or

container as a virtual hard disk.

....

Note:

1. Only local backups can be attached.

2. The attached backup is writable so that the filesystem can process its journal on mount. However,

all changes will be discarded when the backup is detached. The amount of data that can be written

to the attached backup is limited to 256MB.

3. Attached backups are not preserved during clone, backup, and snapshot operations.

2.10.6.1 Attaching Backups to Linux Virtual Machines

1. Make sure that the prl_backup and kpartx utilities are installed in the virtual machine the backup will be

attached to. The prl_backup utility is provided by Virtuozzo guest tools.

2. Obtain the ID and file name of the backup to attach. You can do this with the prlctl backup-list

command. For example:

prlctl backup-list vm2 -f
...
Backup_ID: {0fcd6696-c9dc-4827-9fbd-6ee3abe017fa}
...
Name: harddisk.hdd.qcow2c

3. Attach the backup as an HDD to the Linux VM you will access the backup from. You can do this with the

prlctl set --backup-add command. For example:

prlctl set vm1 --backup-add {0fcd6696-c9dc-4827-9fbd-6ee3abe017fa} \
--disk harddisk.hdd.qcow2c
Creating hdd1 (+) sata:2 real='backup:///{0fcd6696-c9dc-4827-9fbd-6ee3abe017fa}/ \
harddisk.hdd.qcow2c' backup='{0fcd6696-c9dc-4827-9fbd-6ee3abe017fa}' \
disk='harddisk.hdd.qcow2c'

If the backup contains multiple disks and you need to connect them all, omit the --disk parameter.

4. Obtain the name of the newly attached device, which is disabled at the moment, using the prl_backup

list command. For example:

35

Chapter 2. Managing Virtual Machines and Containers

prlctl exec vm1 prl_backup list
...
List of disabled attached backups:
[1] /dev/sdc

5. Enable the backup with the prl_backup enable command. For example:

prlctl exec vm1 prl_backup enable /dev/sdc

6. Optionally, make sure the backup is now enabled, using the prl_backup list -e command. For

example:

prlctl exec vm1 prl_backup list -e
List of enabled attached backups:
[1] /dev/sdc (/dev/mapper/backup1)
NAME TYPE SIZE FSTYPE UUID
MOUNTPOINT
backup1 (dm-3) dm 64G
|-backup1p1 (dm-4) part 500M ext4 1ac82165-113d-40ee-8ae2-8a72f62d95bf
-backup1p2 (dm-5) part 63.5G LVM2_mem Zw9QiY-BiU5-o8dn-ScTK-vOZx-KujW-wbgmS3

Now you can mount the required backup part as a filesystem.

Mounting the ext4 part requires no additional steps. For example:

prlctl exec vm1 mount /dev/mapper/backup1p1 /mnt/backup1p1

You can now access the backup part contents at /mnt/backup1p1.

Mounting the LVM2_member part requires the following preparations:

1. Assign the new volume group a new name so it can coexist with other volume groups. You can do this

with the vgimportclone command. For example:

prlctl exec vm1 vgimportclone -n backup1p2 /dev/mapper/backup1p2
...
Volume group "VolGroup" successfully renamed to "backup1p2"
...
Found volume group "backup1p2" using metadata type lvm2
...

2. Obtain the list of mountable logical volumes with the lvs command. For example:

prlctl exec vm1 lvs | grep backup1p2
lv_home backup1p2 -wi-------11.54g
lv_root backup1p2 -wi------- 50.00g
lv_swap backup1p2 -wi-------1.97g

3. Activate the required logical volume with the lvchange -ay command. For example:

36

2.10. Managing Virtual Machine and Container Backups

prlctl exec vm1 lvchange -ay /dev/backup1p2/lv_root

4. Mount the logical volume as a filesystem. For example:

prlctl exec vm1 mount /dev/backup1p2/lv_root /mnt/backup1p2

You can now access the backup part contents at /mnt/backup1p2.

2.10.6.2 Attaching Backups to Windows Virtual Machines

1. Obtain the backup ID and file name. For example:

prlctl backup-list vm2 -f
...
Backup_ID: {cff742a9-f942-41c5-9ac2-ace3b4eba783}
...
Name: harddisk.hdd.qcow2c

2. Attach the required backup as an HDD to the Windows virtual machine you will access the backup from.

For example:

prlctl set vm1 --backup-add {cff742a9-f942-41c5-9ac2-ace3b4eba783} \
--disk harddisk.hdd.qcow2c
Creating hdd1 (+) sata:2 real='backup:///{cff742a9-f942-41c5-9ac2-ace3b4eba783}/ \
harddisk.hdd.qcow2c' backup='{cff742a9-f942-41c5-9ac2-ace3b4eba783}' \
disk='harddisk.hdd.qcow2c'

The attached backup will appear as a ready-to-use disk in the Windows virtual machine.

2.10.6.3 Attaching Backups to Linux Containers

1. Obtain the backup ID and file name with the prlctl backup-list -f command. For example:

prlctl backup-list 102 -f
...
Backup_ID: {d70441dd-f077-44a0-8191-27704d4d8fdb}
...
Name: root.hdd.qcow2c
...

2. Attach the backup as an HDD to the Linux container you will access the backup from. You can do this

with the prlctl set --backup-add command. For example:

prlctl set MyCT --backup-add {d70441dd-f077-44a0-8191-27704d4d8fdb} \
--disk root.hdd.qcow2c
Creating hdd1 (+) sata:0 real='backup:///{d70441dd-f077-44a0-8191-27704d4d8fdb}/ \
root.hdd.qcow2c' backup='{d70441dd-f077-44a0-8191-27704d4d8fdb}' \

37

Chapter 2. Managing Virtual Machines and Containers

disk='root.hdd.qcow2c'

3. Using the backup ID, identify the ploop device corresponding to the backup. For example:

ploop list | grep {d70441dd-f077-44a0-8191-27704d4d8fdb}
ploop28261 /buse/{8417a267-0919-4c8f-a31d-68671358d6a8}_ \
{d70441dd-f077-44a0-8191-27704d4d8fdb}_root.hdd.qcow2c/content

4. Mount the logical volume as a filesystem. For example:

prlctl exec MyCT mount /dev/ploop28261p1 /mnt/backup1

You can now access the backup contents at /mnt/backup1.

2.10.7 Detaching Backups from Virtual Machines and Containers

....

Note: Before detaching a backup from a running virtual machine, do the following:

1. (Linux VMs) Disable the backup device with the prl_backup disable command run in the guest OS.

2. (Linux and Windows VMs) Disconnect the corresponding virtual disk by running prlctl set

--device-set hdd<N> --disconnect command on the server.

• To detach all virtual disks from all backups attached to a virtual machine or container, use the prlctl

set --backup-del all command. For example:

prlctl set vm1 --backup-del all

• To detach all virtual disks from a specific backup attached to a virtual machine or container, use the

prlctl set --backup-del <backup_ID> command. For example:

prlctl set vm1 --backup-del {e13561bb-5676-49bd-a935-ae0145eb0229}

• To detach a specific virtual disk from any of the backups attached to a virtual machine or container,

delete said disk with the prlctl set --device-del hdd<N> command. For example:

prlctl set vm1 --device-del hdd1

2.11 Managing Templates
A template in Virtuozzo is a pre-configured virtual machine or container that can be easily and quickly

deployed into a fully functional virtual machine or container. Like any normal virtual machine or container, a

38

2.11. Managing Templates

template contains hardware (virtual disks, peripheral devices) and the operating system. It can also have

additional software installed. In fact, the only main difference between a virtual machine or container and a

template is that the latter cannot be started.

You can perform the following operations on templates:

• create a new template,

• list existing templates,

• create a virtual machine or container from a template,

• migrate templates between Virtuozzo servers (see Migrating Virtual Machine and Container Templates on

page 50),

• store templates on Virtuozzo Storage.

These operations are described in the following subsections in detail.

....

Note: In addition, see Using Customized EZ Templates on page 173 for details on how to manually

create and use custom container templates.

2.11.1 Creating Templates

In Virtuozzo, you can create a template using the prlctl clone utility. Making a template may prove useful if

you need to create several virtual machines or containers with the same configuration. In this case, your

steps can be as follows:

1. You create a virtual machine or container with the required configuration.

2. You make a template on the basis of the created virtual machine or container.

3. You use the template to create as many virtual machines or containers as necessary.

Let us assume that you want to create a template of the virtual machine MyVM. To do this, you can run the

following command:

prlctl clone MyVM --name template1 --template

This command clones the virtual machine and saves it as the template1 template. After the template has

been successfully created, you can use it for creating new virtual machines.

39

Chapter 2. Managing Virtual Machines and Containers

2.11.2 Listing Templates

Sometimes, you may need to get an overview of the templates available on your hardware node. For

example, this may be necessary if you plan to create a virtual machine or container from a specific template,

but do not remember its exact name. In this case, you can use the prlctl list command to list all templates

on the hardware node and find the one you need:

prlctl list -t
UUID DIST T NAME
{017bfdf0-b546-4309-90d0-147ce55773f2} centos VM centos_tmpl
{92cd331e-0572-46ac-8586-f19b8d029c4d} centos CT ct201_tmp1
{fc40e38e-8da4-4b26-bb18-6098ec85f7b4} debian VM deb_tmpl
{0dea5912-b114-45a9-bd1a-dc065c1b8e9f} ubuntu VM ubuntu_tmp1
{479e66aa-332c-4e3e-975e-b8b6bfc9d2e0} win-2012 VM w12en_tmpl

In this example, 5 templates exist on the server. The information on these templates is presented in the form

of a table with the following columns (from left to right): the template ID, the operating system contained in

the template, the template type (for a container or virtual machine) and the template name.

2.11.3 Deploying Templates

To deploy a virtual machine or container from a template, use the --ostemplate option of the prlctl create

command. For example, to deploy the virtual machine MyVMtemplate1 from the template template1, run the

following:

prlctl create MyVMtemplate1 --ostemplate template1

To check that the virtual machine has been successfully created, use the prlctl list -a command:

prlctl list -a
STATUS IP_ADDR NAME
running 10.12.12.101 MyVM
stopped 10.12.12.34 MyVMtemplate1

The template itself is left intact and can be used for creating other virtual machines:

prlctl list -t
{4ad11c28-9f0e-4086-84ea-9c0487644026} win-2008 template1
{64bd8fea-6047-45bb-a144-7d4bba49c849} rhel template2

40

2.12. Managing Snapshots

2.11.4 Storing Templates on Virtuozzo Storage

Starting from Virtuozzo 7.0.7 (Update 7), you can store container and virtual machine templates in shared

directories of Virtuozzo Storage clusters. These templates will be available to any server participating in the

cluster.

To place a template on Virtuozzo Storage, do as follows on the cluster node where the source container or

VM is located:

1. Create a template. For example:

prlctl clone MyVM --name template1 --template

2. Move this template to the vmtemplates directory located on Virtuozzo Storage:

• for Virtuozzo Storage with CLI management, the path is /vstorage/<cluster_name>/vmtemplates,

e.g.:

prlctl move template1 --dst /vstorage/vstor1/vmtemplates

• for Virtuozzo Storage with GUI management, the path is /mnt/vstorage/vmtemplates, e.g.:

prlctl move template1 --dst /mnt/vstorage/vmtemplates

Within five minutes, the template will be autodetected by the prlctl utility. You can check template

availability by listing templates on another Virtuozzo Storage server. For example:

prlctl list -t | grep template1
{4ad11c28-9f0e-4086-84ea-9c0487644026} win-2008 template1

Once the template is available throughout the cluster, you can start creating containers or VMs based on it

on any cluster node as described in Deploying Templates on page 40.

2.12 Managing Snapshots
In Virtuozzo, you can save the current state of a virtual machine or container by creating a snapshot. You can

then continue working in your virtual machine or container and return to the saved state any time you wish.

Snapshots may be useful in the following cases:

• Configuring applications with a lot of settings. You may wish to check how settings work before

applying them to the application. So, before you start experimenting, you create a snapshot.

• Participating in large-scale development projects. You may wish to mark development milestones by

41

Chapter 2. Managing Virtual Machines and Containers

creating a snapshot for each. If anything goes wrong, you can easily revert to the previous milestone

and resume the development.

In Virtuozzo, you can create, list, revert to, and delete snapshots. These operations are described in the

following subsections.

2.12.1 Creating Snapshots

To create a snapshot of a virtual machine or container, use the prlctl snapshot command.

2.12.1.1 Creating Virtual Machine Snapshots

To create a snapshot of the virtual machine MyVM, do the following:

prlctl snapshot MyVM
...
The snapshot with ID {12w32198-3e30-936e-a0bbc104bd20} has been successfully created.

A newly created snapshot is saved to the /vz/vmprivate/<UUID>/Snapshots/<snapshot_ID>.pvs file, where

<UUID> is the corresponding virtual machine ID and <snapshot_ID> is a unique snapshot ID. In the above

example, the snapshot with ID {12w32198-3e30-936e-a0bbc104bd20} is saved to the file

/vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/Snapshots/{12w32198-3e30-936e-a0bbc104bd20}.pvs.

ls /vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/Snapshots/
{063615fa-f2a0-4c14-92d4-4c935df15840}.pvc

Snapshot IDs are needed to switch to and delete snapshots.

When creating a snapshot, you can also set its name and description:

prlctl snapshot MyVM -n Clean_System -d "This snapshot was created right after \
installing Windows XP."
...
The snapshot with ID {0i8798uy-1eo0-786d-nn9ic106b9ik} has been successfully created.

You can then view the set name and description in the

/vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/Snapshots.xml file.

2.12.1.2 Creating Container Snapshots

To create a snapshot of the container MyCT, do the following:

42

2.12. Managing Snapshots

prlctl snapshot MyCT
...
The snapshot with ID {08ddd014-7d57-4b19-9a82-15940f38e7f0} has been successfully \
created.

A newly created snapshot is saved to the /vz/private/<UUID>/dump/<snapshot_ID> file, where <UUID> is the

container UUID and <snapshot_ID> is a snapshot ID. In the example above, the snapshot with ID

{08ddd014-7d57-4b19-9a82-15940f38e7f0} is saved to the file

/vz/private/26bc47f6-353f-444b-bc35-b634a88dbbcc/dump/{08ddd014-7d57-4b19-9a82-15940f38e7f0}.

ls /vz/private/26bc47f6-353f-444b-bc35-b634a88dbbcc/dump
{08ddd014-7d57-4b19-9a82-15940f38e7f0}

Snapshot IDs are needed to switch to and delete snapshots.

When creating a snapshot, you can also set its name and description:

prlctl snapshot MyCT --n Clean_System --d "This snapshot was created right after \
installing Windows XP."
...
The snapshot with ID {e78bb2b8-7a99-4c8b-ab9a-491a47648c44} has been successfully \
created.

The set name and description are stored in the /vz/private/<UUID>/Snapshots.xml file.

2.12.1.3 Snapshot Branching

Snapshot branches can be useful for working with, testing or comparing similar configurations. A snapshot

branch is created when you do the following:

1. Create several snapshots.

2. Revert to one of the snapshots.

3. Make changes to the virtual machine or container.

4. Create a snapshot.

In this case, the newly created snapshot will start a new branch based on the snapshot from Step 2.

2.12.1.4 Restrictions and Recommendations

• Virtual machine and snapshot names and snapshot descriptions containing spaces must be enclosed in

quotation marks (e.g., “Windows XP”) when supplying them to the prlctl command.

• Before creating a snapshot, it is recommended that you finish any installations, downloads, and stop

43

Chapter 2. Managing Virtual Machines and Containers

writing to external devices. You should also complete or cancel any transactions performed via the

virtual machine in external databases.

• You cannot create snapshots for containers with enabled NFS server feature.

2.12.2 Listing Snapshots

To list all snapshots of a particular virtual machine or container, use the prlctl snapshot-list command. For

example, to check all current snapshots of the virtual machine MyVM, run this command:

prlctl snapshot-list MyVM
PARENT_SNAPSHOT_ID SNAPSHOT_ID

{989f3415-3e30-4494-936e-a0bbc104bd20}
{989f3415-3e30-4494-936e-a0bbc104bd20} *{063615fa-f2a0-4c14-92d4-4c935df15840}

This command shows that the virtual machine MyVM has two snapshots. The snapshot with ID

{063615fa-f2a0-4c14-92d4-4c935df15840} is based on the snapshot with ID

{989f3415-3e30-4494-936e-a0bbc104bd20}, i.e. the former is a child of the latter. The asterisk marks the

current snapshot.

To view the relationships between snapshots, use the -t option:

prlctl snapshot-list MyVM -t
{989f3415-3e30-4494-936e-a0bbc104bd20}{063615fa-f2a0-4c14-92d4-4c935df15840}\
*{712305b0-3742-4ecc-9ef1-9f1e345d0ab8}

The command output shows you that currently two branches exist for the virtual machine MyVM. The

snapshot with ID {989f3415-3e30-4494-936e-a0bbc104bd20} is the base for these branches.

To get detailed information on a particular snapshot, use the -i option with the snapshot ID:

prlctl snapshot-list MyVM -i {063615fa-f2a0-4c14-92d4-4c935df15840}
ID: {063615fa-f2a0-4c14-92d4-4c935df15840}
Name: Clean_System
Date: 2012-07-22 22:39:06
Current: yes
State: poweroff
Description: <![CDATA[This snapshot was created right after installing Windows 7]]>

The prlctl snapshot-list command with the -i option displays the following information about snapshots:

Field Description

ID ID assigned to the snapshot.

Name Name assigned to the snapshot.

Date Date and time when the snapshot was created.

44

2.13. Migrating Virtual Machines and Containers

Field Description

Current Denotes that this is the current snapshot of the virtual machine.

State State the virtual machine was in at the time you took the snapshot.

Description The description set for the snapshot.

2.12.3 Reverting to Snapshots

To revert to a snapshot, use the prlctl snapshot-switch command. When you revert to a snapshot, the

current state of the virtual machine or container is discarded, and all changes made to the system since the

previous snapshot are lost. So, before reverting, you may want to save the current state by creating a new

snapshot (see Creating Snapshots on page 42).

The prlctl snapshot-switch command requires the virtual machine or container name and the snapshot ID

as arguments, for example:

prlctl snapshot-switch MyVM --id {cedbc4eb-dee7-42e2-9674-89d1d7331a2d}

In this example, you revert to the snapshot {cedbc4eb-dee7-42e2-9674-89d1d7331a2d} for the virtual machine

MyVM.

2.12.4 Deleting Snapshots

To delete unneeded snapshots of virtual machines or containers, use the prlctl snapshot-delete command.

For example:

prlctl snapshot-delete MyVM --id {903c12ea-f6e6-437a-a2f0-a1d02eed4f7e}

When you delete a parent snapshot, child snapshots are not deleted, and the information from the former is

merged into the latter.

2.13 Migrating Virtual Machines and
Containers
To facilitate hardware upgrades and load balancing between multiple hosts, Virtuozzo enables you to

migrate virtual machines and containers between physical servers with the prlctl migrate command.

45

Chapter 2. Managing Virtual Machines and Containers

....

Important: For migration to work, a direct SSH connection on port 22 must be allowed between the

source and destination servers.

Before migration, make sure that the destination server:

• has enough hard disk space to store the resulting virtual machine or container,

• has enough memory and CPU power to run the resulting virtual machine or container,

• has a stable network connection with the source server.

....

Note: Migration of virtual machines with snapshots is not supported (any existing snapshots must be

deleted).

You can migrate VMs and containers both to and from a remote server. For example, to move a VM to a

remote server, run this command on the local server:

prlctl migrate MyVM root:passwd@remoteserver.com

To move a VM from a remote server, run this command the local server:

prlctl migrate root:passwd@remoteserver.com/MyVM localhost

If you do not provide the destination server credentials in the command, you will be asked to do so during

migration.

If you want to place the migrated virtual environment in a custom directory on the destination server, specify

the full path to that directory in the --dst=<custom_path> option. The resulting path to the migrated virtual

environment files will be <custom_path>/<VE_UUID>.

By default, once migration is complete:

• the original virtual machine is removed from the source server,

• the .migrated suffix is added to the names of the original container’s private area and configuration file

on the source server.

Adding the --clone option to the prlctl migrate command enables you to skip the two default actions

above. That is, to keep the original VM and not to add the .migrated suffix to container’s private area and

configuration file. The clone will have a different UUID, MAC address, SID (for Windows-based VMs only; if the

--changesid option is specified), and offline management disabled.

Migration implies transferring large amounts of data between servers which can take considerable time. To

reduce the amount of data to be transferred, Virtuozzo has compression enabled by default. Compression

46

2.13. Migrating Virtual Machines and Containers

consumes additional server resources and can be disabled if necessary with the --no-compression option.

2.13.1 Types of Migration

Virtuozzo allows you to perform two types of migration between Virtuozzo servers:

• Offline migration for stopped and suspended containers and virtual machines.

• Online (live) migration for running containers and running and paused virtual machines. Containers

and virtual machines may be located on Virtuozzo Storage or local storage.

Both types are described in the following sections.

2.13.1.1 Offline Migration of Virtual Machines and Containers

Offline migration implies copying all files of a virtual machine or container from one server to another over

the network.

2.13.1.2 Live Migration of Virtual Machines and Containers

The process of migrating virtual machines and containers live is as follows:

1. Once you start the migration, Virtuozzo checks whether the destination server meets all the migration

requirements and the virtual machine or container can be migrated to it.

2. All virtual memory and disks of the virtual machine or container are migrated to the destination server.

3. The virtual machine or container on the source server is suspended.

4. The changed memory pages and virtual disk blocks, if any, are migrated to the destination server.

5. The virtual machine or container is resumed on the destination server.

The virtual machine or container continues running during steps 1 and 2 and is not available to the user

during steps 3-5. But since the amount of memory pages and virtual disk blocks changed during step 2 is

small, the downtime is almost imperceptible.

After migration, the relocated virtual machine or container may not be accessible over the network for

several minutes due to network equipment reconfiguration (for example, as switches are updating their

dynamic VLAN membership tables).

47

Chapter 2. Managing Virtual Machines and Containers

....

Note: For increased security during live migration, Virtuozzo provides connection tunneling between

the source and destination servers. Tunneling increases migration time. If you do not need a secure

tunnel between servers, you can speed up VM live migration by disabling connection tunneling with the

--no-tunnel option. Tunnelless container migration is not supported. To use the option, configure the

firewall of the destination server to allow incoming connections on any port on the corresponding

network interface.

Live Migration Requirements and Restrictions

When performing live migration, take into account the following requirements and restrictions:

• Before starting live migration, it is recommended to synchronize the system time on the source and

destination servers, for example, by means of NTP (http://www.ntp.org). The reason is that certain

processes running in virtual machines and containers may rely on system time being steady and might

behave unpredictably when resumed on a destination server where time is different.

....

Note: In Virtuozzo 7, time synchronization via NTP is enabled by default using the chronyd

service. If you want to use ntpdate or ntpd, stop and disable chronyd first.

• The network must support data transfer rates of at least 1 Gbps.

• The source and destination servers must belong to the same subnetwork.

• The CPUs on the source and destination servers must be manufactured by the same vendor, and the

CPU capabilities of the destination server must be the same or exceed those on the source server.

• Virtual machine and container disks can be located on local disks, shared NFS and GFS2 storages, and

iSCSI raw devices.

• Live migration is not supported for virtual machines and containers with open prlctl enter sessions

and containers with IPSec connections.

• Containers with NFS clients inside can be migrated only if the following conditions are met:

• Block and character device files shared over NFS are not opened.

• Remote file locking and over-mounted NFS file systems are not used simultaneously.

48

http://www.ntp.org

2.13. Migrating Virtual Machines and Containers

....

Note: Migration of local file locks is supported only for NFS version 3 as it has native support of

such locks.

• Live migration is not supported for containers with enabled NFS server feature.

2.13.2 Migrating Virtual Machines and Containers Between Virtuozzo 7

Servers

You can migrate Virtuozzo 7 virtual machines and containers to other Virtuozzo 7 servers in any mode: online

or offline (for details, see Types of Migration on page 47).

Virtual machines and containers stored in a Virtuozzo Storage cluster are migrated between cluster nodes

without data copying, which significantly reduces migration time.

2.13.3 Migrating Virtual Machines and Containers from Virtuozzo 6 to

Virtuozzo 7

You can migrate older Virtuozzo 6 virtual machines (online) and containers (offline) to Virtuozzo 7 servers.

During migration, such VMs and containers will be converted in the Virtuozzo 7 format. In particular, VM

devices will be replaced by those supported in Virtuozzo 7 (for a list of VM hardware supported in Virtuozzo

7, see Virtual Machine Hardware on page 8).

....

Note: Migration from Virtuozzo 6 to Virtuozzo 7 implies VM and container downtime that depends on

network bandwidth, virtual machine RAM size, and server load. To reduce downtime, it is recommended

to at least perform migration when the server load is minimal.

Before migrating Virtuozzo 6 virtual machines, make sure these requirements are met in addition to those

listed in Live Migration Requirements and Restrictions on page 48:

• The hardware node must be running the latest version of Virtuozzo 6 (or at least 6.0.11-3466).

• The VM must have a guest OS installed.

• The VM must be running.

• The VM must not have snapshots.

49

https://help.virtuozzo.com/customer/en/portal/articles/2530506

Chapter 2. Managing Virtual Machines and Containers

For example, to migrate the virtual machine MyVM from Virtuozzo 6 to Virtuozzo 7, run the following command

on the Virtuozzo 6 server:

prlctl migrate MyVM root:<passwd>@<VZ7_host_IP_address_or_hostname>

During migration, the virtual machine is copied to the destination server and converted to the Virtuozzo 7

format. After a successful migration, the original Virtuozzo 6 virtual machine is unregistered and the

.migrated suffix is added to its directory name.

....

Note: To avoid restarting migrated legacy VMs during conversion, such VMs have their --on-crash

parameter set to paused (while the default value is restart). After successful migration, check this

parameter, e.g., with prlctl list -i <VM_UUID|VM_name> | grep crash, and reset it if required with

prlctl set <VM_UUID|VM_name> --on-crash restart.

If conversion fails, the migrated VM is deleted from the destination server and you can try again. If the

second attempt also fails, you need to enable a legacy VM debug mode on the destination Virtuozzo 7 server

(see Enabling Legacy VM Debug Mode on page 195), make another migration attempt, send the problem

report, and contact the technical support team.

With the debug mode enabled, the migrated VM will not be deleted from the destination Virtuozzo 7 server

after conversion failure. It will remain stopped or running with disabled network to let the technical support

team study the memory dump and find out the reason for failure.

2.13.4 Migrating Virtual Machine and Container Templates

Migrating virtual machine and container templates between Virtuozzo servers is similar to migrating virtual

machines and containers offline.

• To migrate (move) the template template1 to the remote server remoteserver.com, on the local server

run:

prlctl migrate template1 root:passwd@remoteserver.com

• To migrate (move) the template template1 from the remote server remoteserver.com, on the local server

run:

prlctl migrate root:passwd@remoteserver.com/template1 localhost

If you do not provide the remote server credentials in the command, you will be asked to do so during

migration.

50

2.14. Performing Container-specific Operations

Once migration is complete, the original template is removed from the source server (unless --clone is

added).

2.13.5 Migrating EZ Templates

Unlike migrating VM and container templates which by default moves them between servers, migrating EZ

templates always copies them to a remote server. If the source EZ template is not needed after migration,

you can manually delete it with the prlsrvctl cttemplate remove command.

You can migrate OS and application EZ templates between Virtuozzo servers with the prlsrvctl cttemplate

copy command. For example, to copy the OS EZ template centos-7-x86-64 to the remote server

remoteserver.com, on the local server run:

prlsrvctl cttemplate copy root:passwd@remoteserver.com centos-7-x86-64

To copy an application EZ template, additionally specify the name of the corresponding OS EZ template.

....

Note: The specified OS template must be present on the destination server for migration to be

successful.

For example, to copy the application template mysql of the OS template centos-7-x86-64 to the remote server

remoteserver.com, run:

prlsrvctl cttemplate copy root:passwd@remoteserver.com mysql centos-7-x86-64

If you do not provide the destination server credentials in the command, you will be asked to do so during

migration.

To skip all validation checks, indicate the --force option.

After migration, you can check that the migrated EZ templates are present on the destination server with the

prlsrvctl cttemplate list command:

prlsrvctl cttemplate list
centos-7-x86_64 os x86_64 yes Centos 7 (for Intel EM64T) Virtuozzo Template
...
mysql app x86_64 - mysql for Centos 7 (for Intel EM64T) Virtuozz

2.14 Performing Container-specific Operations
This section provides the description of operations specific to containers.

51

Chapter 2. Managing Virtual Machines and Containers

2.14.1 Reinstalling Containers

Reinstalling a container may help if any required container files have been inadvertently modified, replaced,

or deleted, resulting in container malfunction. You can reinstall a container by using the prlctl reinstall

command that creates a new container private area from scratch according to its configuration file and

relevant OS and application templates. For example:

prlctl reinstall MyCT

To keep the personal data from the old container, the utility also copies the old private area contents to the

/vz/root/<UUID>/old directory of the new private area (unless the --skipbackup option is given). This

directory may be deleted after you copy the personal data where you need.

The prlctl reinstall command retains user credentials base, unless the --resetpwdb option is specified.

2.14.1.1 Customizing Container Reinstallation

The default reinstallation, as performed by the prlctl reinstall command, creates a new private area for

the broken container as if it were created by the prlctl create command and copies the private area of the

broken container to the /old directory in the new private area so that no file is lost. There is also a possibility

of deleting the old private area altogether without copying or mounting it inside the new private area, which

is done by means of the --skipbackup option. This way of reinstalling corrupted containers might in certain

cases not correspond exactly to your particular needs. It happens when you are accustomed to creating new

containers in some other way than just using the prlctl create command. For example, you may install

additional software licenses into new containers, or anything else. In this case you would naturally like to

perform reinstallation in such a way so that the broken container is reverted to its original state as

determined by you, and not by the default behavior of the prlctl create command.

To customize reinstallation, you should write your own scripts determining what should be done with the

container when it is being reinstalled, and what should be configured inside the container after it has been

reinstalled. These scripts should be named vps.reinstall and vps.configure, respectively, and should be

located in the /etc/vz/conf directory on the hardware node. To facilitate your task of creating customized

scripts, the containers software is shipped with sample scripts that you may use as the basis of your own

scripts.

When the prlctl reinstall <UUID> command is called, it searches for the vps.reinstall and vps.configure

scripts and launches them consecutively. When the vps.reinstall script is launched, the following

parameters are passed to it:

52

2.14. Performing Container-specific Operations

Option Description

--veid Container UUID.

--ve_private_tmp The path to the container temporary private area. This path designates

where a new private area is temporarily created for the container. If the

script runs successfully, this private area is mounted to the path of the

original private area after the script has finished.

--ve_private The path to the container original private area.

You may use these parameters within your vps.reinstall script.

If the vps.reinstall script finishes successfully, the container is started, and the vps.configure script is

called. At this moment the old private area is mounted to the /old directory inside the new one irrespective

of the --skipbackup option. This is done in order to let you use the necessary files from the old private area in

your script, which is to be run inside the running container. For example, you might want to copy some files

from there to regular container directories.

After the vps.configure script finishes, the old private area is either dismounted and deleted or remains

mounted depending on whether the --skipbackup option was provided.

If you do not want to run these reinstallation scripts and want to stick to the default prlctl reinstall

behavior, you may do either of the following:

• Remove the vps.reinstall and vps.configure scripts from the /etc/vz/conf directory, or at least

rename them;

• Modify the last line of the vps.reinstall script so that it would read exit 128 instead of exit 0.

The exit code 128 tells the utility not to run the scripts and to reinstall the container with the default behavior.

2.14.2 Enabling VPN for Containers

Virtual Private Network (VPN) is a technology which allows you to establish a secure network connection even

over an insecure public network. Setting up a VPN for a separate container is possible via the TUN/TAP

device. To allow a particular container to use this device, do the following:

1. Make sure the tun.omodule is already loaded before Virtuozzo is started:

lsmod | grep 'tun'

2. Allow the container to use the TUN/TAP device:

53

Chapter 2. Managing Virtual Machines and Containers

vzctl set MyCT --devnodes net/tun:rw --save

Configuring the VPN properly is a common Linux administration task, which is out of the scope of this guide.

Some popular Linux software for setting up a VPN over the TUN/TAP driver includes Virtual TUNnel and

OpenVPN.

2.14.3 Setting Up NFS Server in Containers

To set up an NFS server in a container, do the following:

1. Make sure the rpcbind, nfsd, and nfslock services are installed in the container.

2. Enable the NFS server feature for the container by running the prlctl set --features nfsd:on

command on the hardware node. For example:

prlctl set MyCT --features nfsd:on

If the container is running, stop it first. After enabling the feature, restart the container.

....

Note: You cannot perform live migration or create snapshots of containers with enabled NFS

server feature.

3. Start the rpcbind service in the container.

service rpcbind start
Starting rpcbind: [OK]

4. Start the nfs and nfslock services in the container.

service nfs start
Starting NFS services: [OK]
Starting NFS quotas: [OK]
Starting NFS mountd: [OK]
Starting NFS daemon: [OK]
service nfslock start
Starting NFS statd: [OK]

You can now set up NFS shares in the configured container.

2.14.4 Mounting NFS Shares on Container Start

If you configured an NFS share in the /etc/fstab file of a CentOS or RHEL-based container, and you need this

NFS share to be mounted on container start, enable autostart for the netfs service with the chkconfig netfs

54

http://vtun.sourceforge.net
http://openvpn.sourceforge.net

2.14. Performing Container-specific Operations

on command.

2.14.5 Managing Container Virtual Disks

....
Note: You can manage virtual disks of both stopped and running containers.

Virtuozzo allows you to perform the following operations on container virtual disks:

• add new virtual disks to containers,

• configure the virtual disk properties,

• remove virtual disks from containers.

2.14.5.1 Adding Virtual Disks to Containers

New containers are created with a single virtual hard disk, but you can add more disks as follows:

• attach a new or existing image file that emulates a hard disk drive, or

• attach a physical hard disk of the host server.

Using Image Files

You can either attach an existing image to the container or create a new one and keep it at a custom location,

e.g., on a regular disk or in a Virtuozzo Storage cluster. This allows creating more flexible containers, in which

the operating system may be kept on a fast SSD and user data may be stored on redundant Virtuozzo

Storage.

To create a new image file and add it to a container as a virtual hard disk, use the prlctl set --device-add

hdd command. For example:

prlctl set MyCT --device-add hdd --size 100G --mnt /userdisk

....
Note: If you omit the --mnt option, the disk will be added unmounted.

This command adds to the configuration of the container MyCT a virtual hard disk with the following

parameters:

55

Chapter 2. Managing Virtual Machines and Containers

• name: hdd<N> where <N> is the next available disk index,

• default image location: /vz/private/<CT_UUID>/harddisk<N>.hdd where <N> is the next available disk

index,

• size: 102400 MB,

• mount point inside the container MyCT: /userdisk. A corresponding entry is also added to container’s

/etc/fstab file.

To attach an existing image file to a container as a virtual hard disk, specify the path to the image file with the

--image option. For example:

prlctl set MyCT --device-add hdd --image /hdd/MyCT.hdd --size 100G --mnt /userdisk

Attaching Physical Hard Disks

You can attach to a container any physical block device available on the physical server, whether it is a local

hard disk or an external device connected via Fibre Channel or iSCSI.

....

Note: A physical block device must be formatted and have only one filesystem before it can be

attached to a container.

You will need to specify the path to the device, which you can find out the with the prlsrvctl info command.

For example:

prlsrvctl info
...
Hardware info:

hdd WDC WD1002FAEX-0 ATA (/dev/sda2) '/dev/disk/by-id/lvm-pv-uuid-RDYrbU-YZsH-uS8w-\
aH0t-EH9W-6dir-ea9lDL'

hdd WDC WD1002FAEX-0 ATA (/dev/sda) '/dev/disk/by-id/wwn-0x50014ee25a3df4dc'
cdrom PIONEER DVD-RW DVR-220 '/dev/sr0'
net eth0 'eth0'

serial /dev/ttyS0 '/dev/ttyS0'
...

All physical devices available on the physical server are listed in the Hardware info section.

Once you know the path to the physical block device, you can attach it to a container with the prlctl set

--device-add hdd --device command. For example:

prlctl set MyCT --device-add hdd --device '/dev/disk/by-id/wwn-0x50014ee25a3df4dc' \
--mnt /userdisk

56

2.14. Performing Container-specific Operations

....
Note: If you omit the --mnt option, the disk will be added unmounted.

This command adds to the configuration of the container MyCT a virtual hard disk with the following

parameters:

• name: hdd<N> where <N> is the next available disk index,

• path to the device: /dev/disk/by-id/wwn-0x50014ee25a3df4dc where wwn-0x50014ee25a3df4dc is a storage

device unique identifier,

• mount point inside the container: /userdisk. A corresponding entry is also added to container’s

/etc/fstab file.

....

Note:

1. Before migrating containers with external hard drives, make sure that corresponding physical disks

exist on the destination server and are available by the same name (for this purpose, use

persistent naming, for example, via /dev/disk/by-id/),

2. During container backup operations, physical disks connected to the container are not backed up.

3. If you use multipath from a system to a device, it is recommended to use the user_friendly_names

no feature so that multipath devices have names persistent across all nodes in a cluster.

2.14.5.2 Configuring Container Virtual Disks

To configure the parameters of a virtual disk attached to a container, use the prlctl set --device-set

command.

You will need to specify the disk name, which you can find out the with the prlctl list -i command. For

example:

prlctl list -i MyCT | grep "hdd"
hdd0 (+) scsi:0 image='/vz/private/9fd3eee7-70fe-43e3-9295-1ab29fe6dba5/root.hdd' type='expanded' \
10240Mb mnt=/ subtype=virtio-scsi
hdd1 (+) scsi:1 real='/dev/disk/by-id/wwn-0x50014ee25a3df4dc' mnt=/userdisk subtype=virtio-scsi

Once you know the virtual device name, you can configure its properties. For example, to change the type of

the virtual disk hdd0 in the container MyCT from SCSI to IDE, execute:

prlctl set MyCT --device-set hdd0 --iface ide

To check that the virtual disk type has been changed, use the prlctl list -i command. For example:

57

Chapter 2. Managing Virtual Machines and Containers

prlctl list -i MyCT | grep "hdd"
hdd0 (+) ide:0 image='/vz/private/9fd3eee7-70fe-43e3-9295-1ab29fe6dba5/root.hdd' type='expanded' \
10240Mb mnt=/

2.14.5.3 Deleting Virtual Disks from Containers

You can delete a virtual hard disk from a container with the prlctl set --device-del command.

You will need to specify the disk name, which you can find out the with the prlctl list -i command. For

example:

prlctl list -i MyCT | grep "hdd"
hdd0 (+) scsi:0 image='/vz/private/9fd3eee7-70fe-43e3-9295-1ab29fe6dba5/root.hdd' type='expanded' \
10240Mb mnt=/ subtype=virtio-scsi
hdd1 (+) scsi:1 real='/dev/disk/by-id/wwn-0x50014ee25a3df4dc' mnt=/userdisk subtype=virtio-scsi

Once you know the virtual device name, you can remove it from your container. For example, to remove the

virtual disk hdd1 from the container MyCT, execute:

prlctl set MyCT --device-del hdd1

2.14.6 Restarting Containers

You can restart containers from the inside using typical Linux commands, e.g., reboot or shutdown -r.

Restarting is handled by the vzeventd daemon.

If necessary, you can forbid restarting containers from the inside as follows:

• To disable restarting for a specific container, add the ALLOWREBOOT="no" line to the container

configuration file (/etc/vz/conf/<UUID>.conf).

• To disable restarting globally for all containers on the server, add the ALLOWREBOOT="no" line to the global

configuration file (/etc/vz/vz.conf).

• To disable restarting globally except for specific containers, add the ALLOWREBOOT="no" line to the global

configuration file (/etc/vz/vz.conf) and explicitly specify ALLOWREBOOT="yes" in the configuration files of

the respective containers.

58

2.15. Performing Virtual Machine-specific Operations

2.14.7 Creating SimFS-based Containers

In Virtuozzo 7, the simfs layout is based on bindmounts. When a simfs-based container is started, its private

area is bindmounted to the root container area.

To create a simfs container:

1. Set VEFSTYPE=simfs in /etc/vz/vz.conf.

2. Run prlctl create <CT_name>.

The limitations of simfs in Virtuozzo 7 are:

1. No support for first- or second-level quotas.

2. No support for live migration of simfs-based containers.

2.15 Performing Virtual Machine-specific
Operations
This section focuses on operations specific to virtual machines.

2.15.1 Pausing Virtual Machines

Pausing a running virtual machine releases the resources, such as RAM and CPU, currently used by this

virtual machine. The released resources can then be used by the hardware node or other running virtual

machines and containers.

To pause a virtual machine, you can use the prlctl pause command. For example, the following command

pauses the virtual machine MyVM:

prlctl pause MyVM
Pause the VM...
The VM has been successfully paused.

You can check that the virtual machine has been successfully paused by using the prlctl list -a command:

prlctl list -a
STATUS IP_ADDR NAME
running 10.10.10.101 MyCT

59

Chapter 2. Managing Virtual Machines and Containers

paused 10.10.10.201 MyVM

The command output shows that the virtual machine MyVM is paused at the moment. To continue running

this virtual machine, execute this command:

prlctl start MyVM
Starting the VM...
The VM has been successfully started.

2.15.2 Managing Virtual Machine Devices

Virtuozzo allows you to manage the following virtual machine devices:

• hard disk drives

• CD/DVD-ROM drives

• floppy disk drives

• network adapters

• serial ports

• USB controllers

The main operations you can perform on these devices are:

• adding a new device to the virtual machine

• configuring the device properties

• removing a device from the virtual machine

2.15.2.1 Adding New Devices

This section provides information on adding new devices to your virtual machines. You can add new virtual

devices to your virtual machine using the prlctl set command. The options responsible for adding

particular devices are listed in the following table:

60

2.15. Performing Virtual Machine-specific Operations

Option Description

hdd Adds a new hard disk drive to the virtual machine. You can either connect an

existing image to the virtual machine or create a new one.

....

Note: SCSI and VirtIO hard disks can be added to both running and

stopped VMs, IDE disks can only be added to stopped VMs.

cdrom Adds a new CD/DVD-ROM drive to the virtual machine.

net Adds a new network adapter to the virtual machine.

fdd Adds a new floppy disk drive to the virtual machine.

serial Adds a new serial port to the virtual machine.

usb Adds a new USB controller to the virtual machine.

For example, you can execute the following command to add a new virtual disk to the virtual machine MyVM:

prlctl set MyVM --device-add hdd
Creating hdd1 () scsi:1 image='/vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \
harddisk1.hdd' type='expanded' 65536Mb subtype=virtio-scsi
Created hdd1 () scsi:1 image='/vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \
harddisk1.hdd' type='expanded' subtype=virtio-scsi
The VM has been successfully configured.

This command creates a new virtual disk with the following default parameters:

• name: hdd1

• disk type: SCSI

• disk subtype: VirtIO SCSI

• image file name and location: /vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/harddisk1.hdd

• disk format: expanded

• disk capacity: 65536 MB

You can redefine some of these parameters by specifying specific options during the command execution.

For example, to create an IDE virtual disk that will have the capacity of 84 GB, you can run this command:

prlctl set MyVM --device-add hdd --size 84000 --iface ide
Creating hdd2 () ide:0 image='/vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \
harddisk2.hdd' type='expanded' 84000Mb
Created hdd2 () ide:0 image='/vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \
harddisk2.hdd' type='expanded'

61

Chapter 2. Managing Virtual Machines and Containers

The VM has been successfully configured.

The virtual disk has been added to your virtual machine. However, before starting to use it, you must

initialize the disk. Refer to the next subsection for information on how you can do it.

When managing devices, keep in mind the following:

• To a virtual machine, you can connect up to:

• 4 IDE devices (virtual disks or CD/DVD-ROM drives),

• 15 SCSI devices (virtual disks or CD/DVD-ROM drives),

• 15 VirtIO virtual disks.

• A virtual machine can have up to 16 virtual network adapters.

• A virtual machine can have up to 4 serial ports.

• A virtual machine can have only 1 USB controller.

• A virtual machine can have only 1 floppy disk drive.

Adding Hyper-V SCSI Devices to Windows Virtual Machines

Virtuozzo supports Hyper-V paravirtualized device emulation of SCSI hard disks and CD/DVD-ROM drives.

The emulation allows to use these devices with native Windows drivers. It is supported and recommended

for the following Windows operating systems:

• Windows 10 (x64),

• Windows Server 2016,

• Windows Server 2012 R2,

• Windows Server 2012,

• Windows Server 2008 R2 with Service Pack 2.

To add, for example, a SCSI CD/DVD-ROM and HDD emulated via Hyper-V to a VM, run the following

commands:

prlctl set vm1 --device-add cdrom --image <path_to_image> --iface scsi --subtype hyperv
prlctl set vm1 --device-add hdd --iface scsi --subtype hyperv

62

2.15. Performing Virtual Machine-specific Operations

2.15.2.2 Initializing Newly Added Disks

After you added a new blank virtual hard disk to the virtual machine configuration, it will be invisible to the

operating system installed inside the virtual machine until the moment you initialize it.

Initializing the New Virtual Hard Disk in Windows

To initialize a new virtual hard disk in a Windows guest OS, you will need the Disk Management utility

available. For example, in Windows Server 2012 you can access this utility by clicking Start > Control Panel >

System and Security > Administrative Tools > Computer Management > Storage > Disk Management.

When you open the Disk Management utility, it automatically detects that a new hard disk was added to the

configuration and launches the Initialize Disk wizard:

1. In the Select disks section, select the newly added disk.

2. Choose the partition style for the selected disk: MBR (Master Boot Record) or GPD (GUID Partition

Table).

3. Click OK.

The added disk will appear as a new disk in the Disk Management utility window, but its memory space will

be unallocated. To allocate the disk memory, right-click this disk name in the Disk Management utility

window and select New Volume. The New Volume Wizard window will appear. Follow the steps of the wizard

and create a new volume in the newly added disk.

After that your disk will become visible in My Computer and you will be able to use it as a data disk inside

your virtual machine.

Initializing the New Virtual Hard Disk in Linux

Initializing a new virtual hard disk in a Linux guest OS comprises two steps: (1) allocating the virtual hard disk

space and (2) mounting this disk in the guest OS.

To allocate the space, you need to create a new partition on this virtual hard disk using the fdisk utility:

....
Note: To use the fdisk utility, you need the root privileges.

1. Launch a terminal window.

63

Chapter 2. Managing Virtual Machines and Containers

2. To list the IDE disk devices present in your virtual machine configuration, enter:

fdisk /dev/hd*

....

Note: If you added a SCSI disk to the virtual machine configuration, use the fdisk /dev/sd*

command instead.

3. By default, the second virtual hard disk appears as /dev/hdc in your Linux virtual machine. To work with

this device, enter:

fdisk /dev/hdc

....
Note: If this is a SCSI disk, use the fdisk /dev/sdc command instead.

4. To get detailed information about the disk, enter:

p

5. To create a new partition, enter:

n

6. To create the primary partition, enter:

p

7. Specify the partition number. By default, it is 1.

8. Specify the first cylinder. If you want to create a single partition on this hard disk, use the default value.

9. Specify the last cylinder. If you want to create a single partition on this hard disk, use the default value.

10. To create a partition with the specified settings, enter:

w

When you allocated the space on the newly added virtual hard disk, you should format it by entering the

following command in the terminal:

mkfs -t <FileSystem> /dev/hdc1

....

Note: <FileSystem> stands for the filesystem you want to use on this disk. It is recommended to use

ext4.

When the added virtual hard disk is formatted, you can mount it in the guest OS.

64

2.15. Performing Virtual Machine-specific Operations

1. To create a mount point for the new virtual hard disk, enter:

mkdir /mnt/hdc1

....
Note: You can specify a different mount point.

2. To mount the new virtual hard disk to the specified mount point, enter:

mount /dev/hdc1 /mnt/hdc1

When you mounted the virtual hard disk, you can use its space in your virtual machine.

2.15.2.3 Configuring Virtual Devices

In Virtuozzo, you can use the --device-set option of the prlctl set command to configure the parameters of

an existing virtual device. As a rule, the process of configuring the device properties includes two steps:

1. Finding out the name of the device you want to configure.

2. Running the prlctl set command to configure the necessary device properties.

Finding Out Device Names

To configure a virtual device, you need to specify its name when running the prlctl set command. If you do

not know the device name, you can use the prlctl list command to learn it. For example, to obtain the list

of virtual devices in the virtual machine MyVM, run this command:

prlctl list --info MyVM
...
Hardware:

cpu cpus=2 VT-x accl=high mode=32 ioprio=4 iolimit='0'
memory 1024Mb
video 32Mb 3d acceleration=off vertical sync=yes
hdd0 (+) scsi:0 image='/vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \

harddisk.hdd' type='expanded' subtype=virtio-scsi
hdd1 (+) scsi:1 image='/vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \

harddisk1.hdd' type='expanded' subtype=virtio-scsi
cdrom0 (+) scsi:1 image='' subtype=virtio-scsi
usb (+)
net0 (+) dev='vme426f6594' network='Bridged' mac=001C426F6594 card=virtio

...

All virtual devices currently available to the virtual machine are listed under Hardware. In our case the virtual

machine MyVM has the following devices: 2 CPUs, main memory, video memory, a floppy disk drive, 2 hard

disk drives, a CD/DVD-ROM drive, a USB controller, and a network card.

65

Chapter 2. Managing Virtual Machines and Containers

Configuring Virtual Device Properties

Once you know the virtual device name, you can configure its properties. For example, you can execute the

following command to configure the current type of the virtual disk hdd1 in the virtual machine MyVM from

SCSI to IDE:

prlctl set MyVM --device-set hdd1 --iface ide
Configured hdd1 (+) ide:0 image='/vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \
harddisk1.hdd' type='expanded'
The VM has been successfully configured.

To check that the virtual disk type has been successfully changed, use the prlctl list --info command:

prlctl list --info MyVM
...
hdd1 (+) ide:0 image='/vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \
harddisk1.hdd' type='expanded'
...

Connecting and Disconnecting Virtual Devices

In Virtuozzo, you can connect or disconnect certain devices when a virtual machine is running. These devices

include:

• CD/DVD-ROM drives

• floppy disk drives

• network adapters

• printer ports

• serial ports

Usually, all virtual devices are automatically connected to a virtual machine when you create them. To

disconnect a device from the virtual machine, you can use the prlctl set command. For example, the

following command disconnects the CD/DVD-ROM drive cdrom0 from the virtual machine MyVM:

prlctl set MyVM --device-disconnect cdrom0
Disconnect device: cdrom0
The VM has been successfully configured.

To connect the CD/DVD-ROM drive back, you can run the following command:

prlctl set MyVM --device-connect cdrom0
Connect device: cdrom0

66

2.15. Performing Virtual Machine-specific Operations

The VM has been successfully configured.

2.15.2.4 Deleting Devices

You can delete a virtual device that you do not need any more in your virtual machine using the --device-del

option of the prlctl set command. The options responsible for removing particular devices are listed in the

following table:

Option Description

hdd Deletes the specified hard disk drive from the virtual machine.

....
Note: Hard disks can be removed only from stopped virtual machines.

cdrom Deletes the specified CD/DVD-ROM drive from the virtual machine.

net Deletes the specified network adapter from the virtual machine.

fdd Deletes the floppy disk drive from the virtual machine.

serial Deletes the specified serial port from the virtual machine.

usb Deletes the USB controller from the virtual machine.

As a rule deleting a virtual device involves performing two operations:

1. Finding out the name of the device to be deleted.

2. Deleting the device from the virtual machine.

Finding Out the Device Name

To remove a virtual device, you need to specify its name when running the prlctl set command. If you do

not know the device name, you can use the prlctl list command to learn it (for details, see Finding Out

Device Names on page 65).

Deleting a Virtual Device

Once you know the virtual device name, you can remove it from your virtual machine. For example, you can

execute the following command to remove the virtual disk hdd1 from the virtual machine MyVM:

67

Chapter 2. Managing Virtual Machines and Containers

prlctl set MyVM --device-del hdd1
Remove the hdd1 device.
The VM has been successfully configured.

If you do not want to permanently delete a virtual device, you can temporarily disconnect it from the virtual

machine using the --disable option.

2.15.3 Making Screenshots

When a virtual machine stops responding to requests, you can check its state by capturing an image (or

screenshot) of its screen with the prlctl capture command. A screenshot is saved in PNG format.

....
Note: You can take screenshots of running virtual machines only.

To take a screenshot of the MyVM virtual machine screen and save it to the /usr/screenshots/image1.png file:

1. Make sure that the virtual machine is running:

prlctl list
UUID STATUS IP_ADDR T NAME
{b2de86d9-6539-4ccc-9120-928b33ed31b9} running 10.10.100.1 VM MyVM

2. Take the virtual machine screenshot:

prlctl capture MyVM --file /usr/screenshots/image1.png

If the --file option is not specified, a screenshot is dumped to the command output.

3. Check that the image1.png file has been successfully created:

ls /usr/screenshots/
image1.png

2.15.4 Configuring IP Address Ranges for Host-Only Networks

All virtual machines connected to networks of the host-only type receive their IP addresses from the DHCP

server. This DHCP server is set up during the Virtuozzo installation and includes by default IP addresses from

10.37.130.1 to 10.37.130.254. You can redefine the default IP address range for host-only networks and

make virtual machines get their IP addresses from different IP address ranges. For example, you can run the

following command to set the start and end IP addresses for the Host-Only network (this network is

automatically created during the Virtuozzo installation) to 10.10.11.1 and 10.10.11.254, respectively:

68

2.15. Performing Virtual Machine-specific Operations

prlsrvctl net set Host-Only --ip-scope-start 10.10.11.1 --ip-scope-end 10.10.11.254

You can also specify a custom IP address range directly when creating a new network of the host-only type.

Assuming that you want to create a network with the Host-Only2 name and define for this network the IP

addresses range from 10.10.10.1 to 10.10.10.254, you can execute the following command:

prlsrvctl net add Host-Only2 -t host-only --ip-scope-start 10.10.10.1 --ip-scope-\
end 10.10.10.254

When working with IP address ranges, pay attention to the following:

• The start and end IP addresses of an IP address range must belong to the same subnetwork.

• IP address ranges can be defined for each network of the host-only type separately. For example, you

can set the IP address range from 10.10.11.1 to 10.10.11.254 for the Host-Only network and from

10.10.10.1 to 10.10.10.254 for the Host-Only2 network.

2.15.5 Configuring Virtual Machine Crash Mode

In Virtuozzo 7, you can configure a virtual machine behavior after the guest OS crash: restart or pause. By

default, when a virtual machine fails, a crash dump is created and sent in the problem report to the Virtuozzo

technical support team, and the virtual machine is restarted with the same configuration.

To address the problem yourself, you can switch the virtual machine crash mode to pause using the prlctl

set command. For example:

prlctl set MyVM --on-crash pause

The virtual machine resources will be preserved to allow analysis and its crash dump will be sent in the

problem report.

As crash dumps can take up significant disk space and lead to the whole server malfunction, the crash mode

is automatically switched to pause, if a virtual machine fails more than three times within twenty-four hours

since the last crash.

If you want to skip creating the crash dump and sending the problem report, add :no-report to the

command. For example:

prlctl set MyVM --on-crash restart:no-report

69

CHAPTER 3

Managing Resources

The main goal of resource control in Virtuozzo is to provide Service Level Management or Quality of Service

for virtual machines and containers. Correctly configured resource control settings prevent serious impacts

resulting from the resource over-usage (accidental or malicious) of any virtual machine or container on the

other virtual machines and containers. Using resource control parameters for resource management also

allows you to enforce fairness of resource usage among virtual machines and containers and better service

quality for preferred virtual machines and containers, if necessary. All these parameters can be set using

command-line utilities.

3.1 Managing CPU Resources
You can manage the following CPU resource parameters for virtual machines and containers:

• CPU units for virtual machines and containers

• CPU affinity for virtual machines and containers

• CPU limits for virtual machines and containers

• NUMA nodes for virtual machines and containers

• CPU hotplug for virtual machines

• CPU topology for virtual machines

Detailed information on these parameters is given in the following sections.

70

3.1. Managing CPU Resources

3.1.1 Configuring CPU Units

CPU units define how much CPU time one virtual machine or container can receive in comparison with the

other virtual machines and containers on the hardware node if all the CPUs of the hardware node are fully

used. For example, if the container MyCT and the virtual machine MyVM are set to receive 1000 CPU units each

and the container MyCT2 is configured to get 2000 CPU units, the container MyCT2 will get twice as much CPU

time as the container MyCT or the virtual machine MyVM if all the CPUs of the Node are completely loaded.

By default, each virtual machine and container on the Node gets 1000 CPU units. You can configure the

default setting using the prlctl set command. For example, you can run the following commands to allocate

2000 CPU units to the container MyCT and the virtual machine MyVM:

prlctl set MyCT --cpuunits 2000
prlctl set MyVM --cpuunits 2000

3.1.2 Configuring CPU Affinity for Virtual Machines and Containers

If your physical server has several CPUs installed, you can bind a virtual machine or container to specific

CPUs so that only these CPUs are used to handle the processes running in the virtual machine or container.

The feature of binding certain processes to certain CPUs is known as CPU affinity.

By default, any newly created virtual machine or container can consume the CPU time of all processors

installed on the physical server. To bind a virtual machine or container to specific CPUs, you can use the

--cpumask option of the prlctl set command. Assuming that your physical server has 8 CPUs, you can make

the processes in the virtual machine MyVM and the container MyCT run on CPUs 0, 1, 3, 4, 5, and 6 by running

the following commands:

prlctl set MyVM --cpumask 0,1,3,4-6
prlctl set MyCT --cpumask 0,1,3,4-6

You can specify the CPU affinity mask—that is, the processors to bind to virtual machines and containers—as

separate CPU index numbers (0,1,3) or as CPU ranges (4-6). If you are setting the CPU affinity mask for a

running virtual machine or container, the changes are applied on the fly.

To undo the changes made to the virtual machine MyVM and the container MyCT and set their processes to run

on all available CPUs on the server, run these commands:

prlctl set MyVM --cpumask all
prlctl set MyCT --cpumask all

71

Chapter 3. Managing Resources

3.1.3 Configuring CPU Limits for Virtual Machines and Containers

A CPU limit indicates the maximum CPU power a virtual machine or container may get for its running

processes. The container is not allowed to exceed the specified limit even if the server has enough free CPU

power. By default, the CPU limit parameter is disabled for all newly created virtual machines and containers.

This means that any application in any virtual machine or container can use all the free CPU power of the

server.

....

Note: You can change which virtual machine threads—both service and activity or only activity—are

limited by the parameters described below. To do this, enter the prlsrvctl set --vm-cpulimit-type

<full|guest> command and restart running virtual machines for the changes to take effect.

To set a CPU limit for a virtual machine or container, you can use one of these options: --cpulimit, --cpus.

Both options are described below in detail.

3.1.3.1 Using --cpulimit to Set CPU Limits

As a rule, you set a CPU limit for a virtual machine or container by using the prlctl set --cpulimit

command. In the following example, the container MyCT is set to receive no more than 25% of the server CPU

time even if the CPUs on the server are not fully loaded:

prlctl set MyCT --cpulimit 25

This command sets the CPU limit for the container MyCT to 25% of the total CPU power of the server. The total

CPU power of a server in per cent is calculated by multiplying the number of logical CPU cores installed on

the server by 100%. So if a server has 2 logical CPU cores, 2 GHz each, the total CPU power will equal 200%

and the limit for the container MyCT will be set to 500 MHz.

For example, on a hardware node with 2 logical CPU cores, 3 GHz each, the container MyCT will be able to get

25% of 6 GHz, that is, 750 MHz. To ensure that the container MyCT always has the same CPU limit on all

servers, irrespective of their total CPU power, you can set the CPU limits in megahertz (MHz). For example, to

make the container MyCT consume no more than 500 MHz on any hardware node, run the following

command:

prlctl set MyCT --cpulimit 500m

72

3.1. Managing CPU Resources

....

Note: For more information on setting CPU limits for virtual machines and containers, see also CPU

Limit Specifics on page 73.

3.1.3.2 Using --cpus to Set CPU Limits

Another way of setting a CPU limit for a virtual machine or container is to use the prlctl set --cpus

command. In this case, you can specify how many logical CPU cores per CPU socket the virtual machine or

container may use. For example, as containers have only one CPU socket (for details, see Configuring CPU

Topology for Virtual Machines on page 76), you can allow the container MyCT to use only 2 cores by running this

command:

prlctl set MyCT --cpus 2

To make sure that the CPU limit has been successfully set, you check /proc/cpuinfo in the container. For

example:

prlctl exec MyCT cat /proc/cpuinfo | grep "cpu cores"
cpu cores : 2

3.1.3.3 Using --cpulimit and --cpus Simultaneously

If you use both --cpulimit and --cpus to set the CPU limit for a virtual machine or container, the smallest

limit applies. For example, running the following commands on a server with 4 CPUs, 2 GHz each, will set the

limit for the container MyCT to 2 GHz:

prlctl set MyCT --cpus 2
prlctl set MyCT --cpulimit 2000m

3.1.3.4 CPU Limit Specifics

Internally, Virtuozzo sets the CPU limit for virtual machines and containers in percent. On multi-core systems,

each logical CPU core is considered to have the CPU power of 100%. So if a server has 4 CPU cores, the total

CPU power of the server equals 400%.

You can also set a CPU limit in megahertz (MHz). If you specify the limit in MHz, Virtuozzo uses the following

formula to convert the CPU power of the server from MHz into percent: CPULIMIT_% = 100% * CPULIMIT_MHz /

CPUFREQ, where

• CPULIMIT_% is the total CPU power of the server in percent.

73

Chapter 3. Managing Resources

• CPULIMIT_MHz is the total CPU power of the server in megahertz.

• CPUFREQ is the CPU frequency of one core on the server.

When setting CPU limits, note the following:

• Make sure that the CPU limit you plan to set for a virtual machine or container does not exceed the total

CPU power of the server. So if a server has 4 CPUs, 1000 MHz each, do not set the CPU limit to more

than 4000 MHz.

• The processes running in a virtual machine or container are scheduled for execution on all server CPUs

in equal shares. For example, if a server has 4 CPUs, 1000 MHz each, and you set the CPU limit for a

virtual machine or container to 2000 MHz, the virtual machine or container will consume 500 MHz from

each CPU.

• All running virtual machines and containers on a server cannot simultaneously consume more CPU

power than is physically available on the node. In other words, if the total CPU power of the server is

4000 MHz, the running virtual machines and containers on this server will not be able to consume more

than 4000 MHz, irrespective of their CPU limits. It is, however, perfectly normal that the overall CPU

limit of all virtual machines and containers exceeds the Node total CPU power because most of the time

virtual machines and containers consume only part of the CPU power assigned to them.

3.1.4 Binding CPUs to NUMA Nodes

On systems with a NUMA (Non-Uniform Memory Access) architecture, you can configure virtual machines

and containers to use CPUs from specific NUMA nodes only. Consider the following example:

• Your physical server has 8 CPUs installed.

• The CPUs are divided into 2 NUMA nodes: NUMA node 0 and NUMA node 1. Each NUMA node has 4

CPUs.

• You want the processes in the container MyCT to be executed on the processors from NUMA node 1.

To set the container MyCT to use the processors from NUMA node 1, run the following command:

prlctl set MyCT --nodemask 1

To check that the container MyCT is now bound to NUMA node 1, use this command:

prlctl list -i MyCT | grep nodemask
cpu cpus=unlimited VT-x hotplug accl=high mode=32 cpuunits=1000 ioprio=4 nodemask=1

To unbind the container MyCT from NUMA node 1, execute this command:

74

3.1. Managing CPU Resources

prlctl set MyCT --nodemask all

Now the container MyCT should be able to use all CPUs on the server again.

....
Note: For more information on NUMA, visit http://lse.sourceforge.net/numa.

3.1.5 Enabling CPU Hotplug for Virtual Machines

If a guest operating system supports the CPU hotplug functionality, you can enable this functionality for the

virtual machine. Once the CPU hotplug functionality is turned on, you can increase the number of CPUs

available to your virtual machines even if they are running.

Currently, the following systems come with the CPU hotplug support:

• Linux operating systems based on the RHEL 5 kernel and higher (Red Hat Linux Enterprise 5, CentOS 5,

and so on)

• x64 version of Windows Server 2008 R2 (Datacenter Edition)

• x64 version of Windows Server 2012 (Standard and Datacenter Edition)

• x64 version of Windows Server 2008 (Standard Edition)

• x64 version of Windows Server 2008 (Enterprise Edition)

• x64 version of Windows Server 2008 (Datacenter Edition)

By default, the CPU hotplug support is disabled for all newly created virtual machines. To enable this

functionality, you can use the --cpu-hotplug option of the prlctl set command. For example, to enable the

CPU hotplug support in the virtual machine MyVM that runs one of the supported operating systems, stop the

virtual machine MyVM and run this command:

prlctl set MyVM --cpu-hotplug on
set cpu hotplug: 1
The VM has been successfully configured.

Once the functionality is enabled, you can increase the number of CPUs in the virtual machine MyVM even it is

running. Assuming that your physical server has 4 CPUs installed and the processes in the virtual machine

MyVM are set to be executed on two CPUs, you can run the following command to assign 3 CPUs to the virtual

machine:

prlctl set MyVM --cpus 3
set cpus(4): 3

75

http://lse.sourceforge.net/numa

Chapter 3. Managing Resources

The VM has been successfully configured.

To disable the CPU hotplug support in the virtual machine MyVM, use this command:

prlctl set MyVM --cpu-hotplug off
set cpu hotplug: 0
The VM has been successfully configured.

The changes will come into effect on the next virtual machine start.

3.1.6 Configuring CPU Topology for Virtual Machines

In the current version of Virtuozzo, you can specify CPU topology for virtual machines, i.e. the number of CPU

sockets and CPU cores per socket. This can be efficient, for example, if you use a guest operating system that

supports a specific number of CPU sockets (e.g., limited by a license). In such a case, you can set the VM to

use as many CPU cores as allowed by the guest OS and achieve near-native guest OS performance. The

overall number of CPU cores available to a virtual machine is calculated by multiplying the number of CPU

sockets by the number of CPU cores per socket. It can be no greater than the number of CPU cores on the

host physical server.

By default, a virtual machine is created with one CPU socket and two CPU cores.

....
Note: In turn, a container has only one CPU socket, and this parameter cannot be changed.

You can change the number of CPU sockets and CPU cores per socket of a virtual machine using the

--cpu-sockets and --cpus options of the prlctl set command. For example, if your physical server has 4 CPU

cores, you can allow the virtual machine MyVM to use 2 CPU sockets and 2 CPU cores per socket by running the

following command:

prlctl set MyVM --cpu-sockets 2 --cpus 2

If a virtual machine is running, the changes will take effect after it is restarted.

To check the current CPU topology of a VM, run the following command:

prlctl list MyVM -i | grep "cpu"
cpu sockets=2 cpus=2 cores=2 <...>

76

3.2. Managing Disk Quotas

3.2 Managing Disk Quotas
You can limit disk space that individual users and groups in a container can use with standard Linux tools

from the quota package.

Before you can set disk quotas in a container, you will need to enable them for this container as follows:

1. Set QUOTAUGIDLIMIT to 1 in container configuration file (/etc/vz/conf/<UUID>.conf) or run the command

prlctl set <UUID> --quotaugidlimit 1.

2. Restart the container.

3.3 Managing Virtual Disks
In Virtuozzo, you can manage virtual disks as follows:

• resize,

• compact (reduce their size on the physical hard drive),

• change interface.

All these operations are described in the following subsections in detail.

3.3.1 Resizing Virtual Disks

....
Warning: Only use prl_disk_tool on disks of stopped virtual machines.

You can resize virtual hard disks of your virtual machines or containers with the prl_disk_tool resize --size

command. For example:

prl_disk_tool resize --hdd /vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \
harddisk.hdd --size 30G

When resizing virtual disks, keep in mind the following:

• The virtual machine that uses the virtual disk to be resized must not have any snapshots.

• The virtual disk size shown inside the virtual machine or container may differ from the size the virtual

77

Chapter 3. Managing Resources

disk occupies on server’s physical disk.

• In case disk size is increased, the added disk space is added as unallocated. You can use standard tools

of the guest OS to allocate the added space.

• You cannot reduce XFS filesystems (the default choice for CentOS 7 and Red Hat Enterprise Linux 7).

3.3.1.1 Checking the Minimum Disk Capacity

If, before reducing disk capacity, you want to know the minimum size to which it can be reduced, use the

prl_disk_tool resize --info command. For example, if the disk hdd0 of the virtual machine MyVM is emulated

by the image /vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/harddisk.hdd, run the following

command:

prl_disk_tool resize --info --hdd /vz/vmprivate/d35d28e5-11f7-4b3f-9065- \
8fef6178bc5b/harddisk.hdd
Disk information:
...
Minimum: 2338M
...

3.3.2 Compacting Disks

....
Warning: Only use prl_disk_tool on disks of stopped virtual machines.

In Virtuozzo, you can reduce the space your virtual machines and containers occupy on the physical server’s

disk drive by compacting their virtual disks. Doing so frees up server disk space for hosting more virtual

machines and containers.

To compact a virtual disk, you can use the prl_disk_tool compact command. For example, to compact the

disk /vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/harddisk.hdd, run this command:

prl_disk_tool compact --hdd /vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \
harddisk.hdd/

To check the space that was freed by compacting the virtual disk, you can use standard Linux utilities (for

example, df).

78

3.3. Managing Virtual Disks

3.3.3 Managing Virtual Machine Disk Interfaces

By default, any virtual machine is created with a SCSI virtual hard disk. If necessary, you can change the

interface type of a disk from SCSI to IDE or VirtIO. For example, to change the interface type of the default

disk (hdd0) in the virtual machine MyVM from SCSI to IDE, you can run the following command:

prlctl set MyVM --device-set hdd0 --iface ide
The VM has been successfully configured

To check that the interface type has been successfully changed, use this command:

prlctl list -i MyVM | grep hdd0
Boot order: hdd0 cdrom0 net0
hdd0 (+) ide:0 image='/vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \
harddisk.hdd'

The command output shows that now the interface type of the hdd0 disk is IDE.

You can create additional disks for the virtual machine MyVM. For example, to add a new disk of the IDE type to

the virtual machine, execute the following command:

prlctl set MyVM --device-add hdd --iface ide
Creating hdd1 (+) ide:1 image='/vz/vmprivate/d35d28e5-11f7-4b3f-9065-8fef6178bc5b/ \
harddisk1.hdd' 65536Mb
Create the expanding image file, 65536Mb...
The VM has been successfully configured.

You can also create a VirtIO disk. To do this, specify --iface virtio instead of --iface ide in the command

above. If you omit the --iface option, a SCSI disk is created by default.

The maximum number of devices you can add to a virtual machine is given below:

• 4 IDE devices (virtual hard disks or CD/DVD-ROM drives)

• 15 SCSI devices (virtual hard disks or CD/DVD-ROM drives)

• 15 VirtIO virtual hard disks

At any time, you can remove the hdd1 disk from the virtual machine MyVM:

prlctl set MyVM --device-del hdd1
Remove the hdd1 device.
The VM has been successfully configured.

79

Chapter 3. Managing Resources

....

Note:

1. Virtual IDE and SCSI disks can be added to or removed from stopped virtual machines only.

2. You need to initialize a newly added disk before you can start using it. To initialize the disk, use

standard means provided by your guest operating system.

3.4 Managing Network Accounting and
Bandwidth
This section explains how to perform the following tasks in Virtuozzo:

• configuring network classes

• viewing network traffic statistics

• turning on and off network bandwidth management

• configuring bandwidth limits

3.4.1 Network Traffic Parameters

The table below summarizes the network traffic parameters that you can control in Virtuozzo.

Parameter Description

traffic_shaping If set to yes, traffic limitations for outgoing traffic are set for virtual machines

and containers. The default is no.

bandwidth This parameter lists all network adapters installed on the hardware node and

their bandwidth.

totalrate This parameter defines the bandwidth to allocate for each network class. It is

active if traffic shaping is turned on.

rate If traffic shaping is turned on, this parameter specifies the bandwidth

guarantee for virtual machines and containers.

80

3.4. Managing Network Accounting and Bandwidth

Parameter Description

ratebound If this parameter is set to yes, the bandwidth guarantee (the global rate

parameter) is also the limit for the virtual machine or container, and the

virtual machine or container cannot borrow the bandwidth from the

totalrate bandwidth pool.

3.4.2 Configuring Network Classes

Virtuozzo allows you to track the inbound and outbound network traffic as well as to shape the outgoing

traffic for virtual machines and containers. To provide the ability to distinguish between types of traffic, e.g.,

domestic and international, a concept of network classes is introduced. A network class is a range of IP

addresses for which Virtuozzo accounts and shapes the traffic.

Classes are specified in the /etc/vz/conf/networks_classes file. The file is in the ASCII format, and all empty

lines and lines starting with the # sign are ignored. Other lines have the following format:

<class_id> <IP_address>/<prefix_length>

where <class_id> defines the network class ID, and the <IP_address>/<prefix_length> pair defines the range

of IP addresses for this class. There may be several lines for each class.

Classes 0 and 1 have special meanings:

• Class 0 defines the IP address range for which no accounting is performed. Usually, it corresponds to

the hardware node subnet (the node itself and its virtual machines and containers). Setting up class 0 is

not required; however, its correct setup improves performance.

• Class 1 is defined by Virtuozzo to match any IP address. It must be always present in the network classes

definition file. Therefore, it is suggested not to change the default line in the networks_classes file.

1 0.0.0.0/0

If your virtual machines and containers are using IPv6 addresses, you can also add the following line to

this file:

1 ::/0

Other classes should be defined after class 1. They represent exceptions from the “matching-everything” rule

of class 1. The example below illustrates a possible configuration of the network classes definition file

containing rules for both IPv4 and IPv6 addresses:

81

Chapter 3. Managing Resources

Hardware node networks
0 192.168.0.0/16
0 fe80::/64
any IP address (all traffic)
1 0.0.0.0/0
1 ::/0
class 2 - addresses for the "foreign" traffic
2 10.0.0.0/8
2 2001:db88::/64
inside "foreign" network there
is a hole belonging to "local" traffic
1 10.10.16.0/24
1 2001:db88:3333::/64

In this example, IPv4 addresses in the range of 192.168.0.0 to 192.168.255.255 and IPv6 addresses in the

range of fe80:: to fe80::ffff:ffff:ffff:ffff are treated as class 0 addresses and no accounting is done for

the traffic from virtual machines and containers destined to these addresses.

Class 2 matches the following IP addresses:

• IPv4 addresses from 10.0.0.0 to 10.255.255.255 with the exception of addresses in the sub-range of

10.10.16.0 to 10.10.16.255, which are treated as class 1.

• IPv6 addresses from 2001:db88:: to 2001:db88::ffff:ffff:ffff:ffff with the exception of addresses in

the sub-range of 2001:db88:3333:: to 2001:db88:3333::ffff:ffff:ffff:ffff, which are also treated as

class 1.

All other IP addresses (both IPv4 and IPv6) belong to class 1.

To apply changes after editing the /etc/vz/conf/networks_classes file, restart either the virtual machine(s)

or/and container(s) for which changes have been made or the hardware node itself if the changes are global.

3.4.3 Viewing Network Traffic Statistics

In Virtuozzo, you can view the current network traffic statistics for virtual machines and containers using the

vznetstat utility. For example:

vznetstat
UUID Net.Class Input(bytes) Input(pkts) Output(bytes) Output(pkts)
0 0 566093064 2800575 3120481 41736
47406484... 0 67489 155 8033 110
fbb30afa-... 0 9369 78 12692 71

By default, vznetstat shows network statistics for both virtual machines and containers. Keep in mind that

the vznetstat utility displays statistics only about virtual machines and containers that were started at least

82

3.4. Managing Network Accounting and Bandwidth

once.

The vznetstat utility displays the following information:

Column Description

UUID UUID assigned to virtual machine or container.

Net.Class ID of the network class for which network statistics is calculated.

Input(bytes) Amount of incoming traffic, in bytes.

Input(pkts) Amount of incoming traffic, in packets.

Output(bytes) Amount of outgoing traffic, in bytes.

Output(pkts) Amount of outgoing traffic, in packets.

For example, from the command output above, you can see that around 9 MB of data were uploaded to the

container MyCT, (2) about 12 MB were downloaded from it, and all the traffic was exchanged with servers

from class 0 networks.

If necessary, you can view network traffic statistics separately for virtual machine or container by passing the

-t option to vznetstat:

• For containers only:

vznetstat -t ct
CTID Net.Class Input(bytes) Input(pkts) Output(bytes) Output(pkts)
0 0 566093064 2800575 3120481 41736
fbb30afa-... 0 9369 78 12692 71

• For virtual machines only:

vznetstat -t vm
UUID Net.Class Input(bytes) Input(pkts) Output(bytes) Output(pkts)
0 0 566093064 2800575 3120481 41736
47406484... 0 67489 155 8033 110

You can also view network statistics for a particular virtual machine or container by specifying its ID after the

-v option, for example:

vznetstat -v fbb30afa-e770-4081-9d9e-6b9c262eb091
UUID Net.Class Input(bytes) Input(pkts) Output(bytes) Output(pkts)
fbb30afa-... 0 9369 78 12692 71

This command displays statistics only for the container MyCT.

83

Chapter 3. Managing Resources

3.4.4 Configuring Traffic Shaping

Traffic shaping (also known as network bandwidth management) allows you to control what network

bandwidth a virtual machine or container may use for outgoing traffic. This feature is disabled by default.

....

Note:

1. Traffic within a host cannot be shaped in the current version of Virtuozzo. This includes traffic

between virtual machines and containers on the same host and between those and the host itself.

2. Incoming traffic cannot be shaped for virtual machines and containers in the current version of

Virtuozzo.

The following parameters control traffic shaping in Virtuozzo:

• TRAFFIC_SHAPING, enables and disables traffic shaping.

• BANDWIDTH, sets bandwidth for specific network adapters.

• TOTALRATE, sets the size of a bandwidth pool divided between virtual machines and containers on the

host.

• RATEMPU, limits packet rate in addition to byte rate.

• RATE, sets a bandwidth guarantee for virtual machines and containers.

• RATEBOUND, forces RATE as a limit.

Traffic shaping in Virtuozzo works as follows. The bandwidth pool for a given network class (set by TOTALRATE)

is divided among the virtual machines and containers transmitting data proportionally to their RATE settings.

If the sum of RATE values of all virtual machines and containers transmitting data does not exceed TOTALRATE,

each virtual machine or container gets the bandwidth equal to or greater than its RATE value (unless

RATEBOUND is enabled for said virtual machine or container). If the sum of RATE values of all virtual machines

and containers transmitting data exceeds the TOTALRATE value, each virtual machine or container may get less

than its RATE value.

To enable and configure traffic shaping, do the following:

1. Set the value of TRAFFIC_SHAPING to yes in the global configuration file /etc/vz/vz.conf.

2. Set the parameters BANDWIDTH, TOTALRATE in /etc/vz/vz.conf.

3. If required, set the optional parameters RATEMPU, RATE, RATEBOUND in /etc/vz/vz.conf.

84

3.4. Managing Network Accounting and Bandwidth

4. If required, set RATE and RATEBOUND for specific virtual machines and containers with prlctl set --rate

and prlctl set --ratebound commands.

5. To apply changes, restart either the virtual machines and containers for which changes have been

made or the hardware node itself if the changes are global.

The following sections provide more details on and explain how to set traffic shaping parameters listed

above.

3.4.4.1 Setting BANDWIDTH Parameter

The BANDWIDTH parameter is used for shaping traffic of specific network adapters. For example, for two Fast

Ethernet cards, a typical setting may look like enp0s5 enp0s6:100000 where enp0s5 and enp0s6 are network

adapter names. By default, the parameter is set to 100000 which corresponds to a 100 Mbps Fast Ethernet

card.

3.4.4.2 Setting TOTALRATE Parameter

The TOTALRATE parameter specifies the size of a bandwidth pool for specific network classes on the host.

Virtual machines and containers can borrow bandwidth from the pool for communicating with hosts from

the corresponding network class. The parameter thus limits the total available outgoing traffic for a network

class that virtual machines and containers can consume.

The parameter is set as <NIC>:<network_class>:<bandwidth_in_Kbps>. For example, to set the pool size to 4

Mbps for network class 1 on the Ethernet adapter enp0s5, set TOTALRATE to enp0s5:1:4000. Multiple entries can

be separated by spaces, e.g., enp0s5:1:4000 enp0s6:2:8000.

3.4.4.3 Setting RATEMPU Parameter

The optional RATEMPU parameter (where “MPU” stands for “minimum packet unit”) limits the packet rate by

making packets smaller than MPU in size consume HTB tokens. With it, small packets can be accounted as

larger ones and limited by TOTALRATE and RATE parameters. Approximately, the maximum packets per second

rate can be calculated as TOTALRATE / RATEMPU.

This parameter has the following syntax: <NIC>:<network_class>[:<MPU_in_bytes_per_packet>]. If the part

<MPU_in_bytes_per_packet> is omitted, the default value of 1000 bytes is used. Multiple entries can be

separated by spaces, e.g., enp0s5:1:2000 enp0s6:2:4000. To set the RATEMPU parameter for all known Ethernet

85

Chapter 3. Managing Resources

devices set <NIC> to an asterisk (*). For example, to set the minimal packet size to 2 Kb for network class 1 on

all the Ethernet adapters on the node, change the value to *:1:2000.

3.4.4.4 Setting RATE and RATEBOUND Parameters

The optional RATE parameter allows you to guarantee virtual machines and containers outgoing bandwidth to

destinations in a specific network class on a specific Ethernet device. The guaranteed bandwidth is not a limit

(unless the RATEBOUND parameter is also set to on, see below). A virtual machine or container can additionally

obtain unused bandwidth from the bandwidth pool defined by TOTALRATE.

You can set the guaranteed bandwidth in two ways:

1. For all virtual machines and containers on the host by setting RATE in the global configuration file

/etc/vz/vz.conf.

The parameter is set as <NIC>:<network_class>:<bandwidth_in_Kbps>. For example, to guarantee all

virtual machines and containers on the host the bandwidth of at least 8 Kbps for outgoing traffic in

network class 1 on the Ethernet device enp0s5, set the RATE parameter to enp0s5:1:8.

2. For specific virtual machines or containers by means of the prlctl set --rate command.

For example, to guarantee the container MyCT the bandwidth of at least 16 Kbps for outgoing traffic in

network class 1, run

prlctl set MyCT --rate 1:16

This command sets the bandwidth for the default network adapter only. If you need to set bandwidth

for other network adapters, set RATE in /etc/vz/vz.conf.

....
Note: It is recommended to increase RATE value in 8 Kbps increments and set it to at least 8 Kbps.

The optional RATEBOUND parameter specifies whether the network bandwidth guaranteed by RATE is also a

limit. By default, this feature is disabled for all newly created virtual machines and containers so they may

additionally obtain unused bandwidth from the pool set by TOTALRATE.

You can limit bandwidth of virtual machines and containers to the guaranteed value as follows:

1. For all virtual machines and containers on the host by setting RATEBOUND in the global configuration file

/etc/vz/vz.conf (omitted by default).

2. For specific virtual machines or containers by means of the prlctl set --ratebound command. For

example:

86

3.5. Managing Disk I/O Parameters

prlctl set MyCT --ratebound yes

If set, values of RATE and RATEBOUND provided for specific virtual machines and containers are chosen over

global values in /etc/vz/vz.conf.

3.4.4.5 Traffic Shaping Example

The example below illustrates a scenario when the containers MyCT1 and MyCT2 have RATEBOUND set to no, and

the virtual machine MyVM has RATEBOUND set to yes. With the default TOTALRATE of 4096 Kbps and RATE of 8

Kbps, the bandwidth pool will be distributed as follows:

MyCT1 MyCT2 MyVM Consumed Bandwidth

transmits idle idle MyCT1: 4096 Kbps

idle idle transmits MyVM: 8 Kbps

transmits transmits idle MyCT1: 2048 Kbps MyCT2: 2048 Kbps

transmits idle transmits MyCT1: 4032 Kbps MyVM: 8 Kbps

transmits transmits transmits MyCT1: 2016 Kbps MyCT2: 2016 Kbps

MyVM: 8 Kbps

3.5 Managing Disk I/O Parameters
This section explains how to manage disk input and output (I/O) parameters in Virtuozzo systems.

3.5.1 Configuring Priority Levels for Virtual Machines and Containers

In Virtuozzo, you can configure the disk I/O (input/output) priority level of virtual machines and containers.

The higher the I/O priority level, the more time the virtual machine or container will get for its disk I/O

activities as compared to the other virtual machines and containers on the hardware node. By default, any

virtual machine or container on the hardware node has the I/O priority level set to 4. However, you can

change the current I/O priority level in the range from 0 to 7 using the --ioprio option of the prlctl set

command. For example, you can issue the following command to set the I/O priority of the container MyCT

and the virtual machine MyVM to 6:

87

Chapter 3. Managing Resources

prlctl set MyCT --ioprio 6
prlctl set MyVM --ioprio 6

To check the I/O priority level currently applied to the container MyCT and the virtual machine MyVM, you can

execute the following commands:

• For container MyCT:

grep IOPRIO /etc/vz/conf/fbb30afa-e770-4081-9d9e-6b9c262eb091.conf
IOPRIO="6"

• For the virtual machine MyVM:

prlctl list MyVM --info | grep ioprio
cpu cpus=2 VT-x accl=high mode=32 ioprio=6 iolimit='0'

3.5.2 Configuring Disk I/O Bandwidth

In Virtuozzo, you can configure the bandwidth virtual machines and containers are allowed to use for their

disk input and output (I/O) operations. Limiting the disk I/O bandwidth can help you prevent the situations

when high disk activities in one virtual machine or container (generated, for example, by transferring huge

amounts of data to/from the virtual machine or container) can slow down the performance of other virtual

machines and containers on the hardware node.

By default, the I/O bandwidth limit for all newly created virtual machines and containers is set to 0, which

means that no limits are applied to any virtual machines and containers. To limit the disk I/O bandwidth for a

virtual machine or container, you can use the --iolimit option of the prlctl set command. For example, the

following command sets the I/O bandwidth limit for the container MyCT to 10 megabytes per second (MB/s):

prlctl set MyCT --iolimit 10

By default, the limit is set in megabytes per second. However, you can use the following suffixes to use other

measurement units:

• G sets the limit in gigabytes per second (1G).

• K sets the limit in kilobytes per second (10K).

• B sets the limit in bytes per second (10B).

....

Note: In the current version of Virtuozzo, the maximum I/O bandwidth limit you can set for a virtual

machine or container is 2 GB per second.

88

3.5. Managing Disk I/O Parameters

To check that the I/O speed limit has been successfully applied to the container MyCT, use the prlctl list

command:

prlctl list MyCT -o iolimit
IOLIMIT
10485760

At any time, you can remove the I/O bandwidth limit set for container MyCT by running this command:

prlctl set MyCT --iolimit 0

3.5.3 Configuring the Number of I/O Operations Per Second

In Virtuozzo, you can limit the maximum number of disk input and output operations per second virtual

machines and containers are allowed to perform (known as the IOPS limit). You may consider setting the

IOPS limit for virtual machines and containers with high disk activities to ensure that they do not affect the

performance of other virtual machines and containers on the Node.

....

Note: By default all I/O inside containers is cached and the direct access flag (O_DIRECT) is ignored

when opening files. This significantly reduces the number of IOPS required for container workload and

helps avoid I/O bottlenecks on the Node. For instructions on how to configure honoring of the O_DIRECT

flag inside containers, see Setting the Direct Access Flag Inside Containers on page 90 below.

By default, IOPS is not limited for newly created virtual machines and containers. To set the IOPS limit, you

can use the --iopslimit option of the prlctl set command. For example, to allow the container MyCT and the

virtual machine MyVM to perform no more than 100 disk I/O operations per second, you can run the following

commands:

prlctl set MyCT --iopslimit 100
prlctl set MyVM --iopslimit 100

To ensure that the IOPS limit has been successfully applied, use the prlctl list -i command. For example:

prlctl list MyCT -i | grep iopslimit
<...> iopslimit=100

At any time, you can remove the set IOPS limits by running this command:

prlctl set MyCT --iopslimit 0
prlctl set MyVM --iopslimit 0

89

Chapter 3. Managing Resources

3.5.3.1 Setting the Direct Access Flag Inside Containers

You can configure honoring of the O_DIRECT flag inside containers with the sysctl parameter

fs.odirect_enable:

• To ignore the O_DIRECT flag inside a container, set fs.odirect_enable to 0 in that container.

• To honor the O_DIRECT flag inside the container, set fs.odirect_enable to 1 in that container.

• To have a container inherit the setting from the hardware node, set fs.odirect_enable to 2 in that

container (default value). On the hardware node, fs.odirect_enable is 0 by default.

....

Note: The fs.odirect_enable parameter on the Node only affects honoring of the O_DIRECT flag

in containers and not on the Node itself where the O_DIRECT flag is always honored.

3.5.4 Viewing Disk I/O Statistics

In Virtuozzo, you can view disk input and output (I/O) statistics for all processes on the host. To do this:

1. Run the vztop utility.

2. Press F2 or S to switch to the Setup menu.

3. In the Setup column, choose Columns.

4. In Available Columns, choose from the following parameters to add to the output (Active Columns):

Parameter Description Column

RBYTES Number of bytes read for the process. IO_RBYTES

WBYTES Number of bytes written for the process. IO_WBYTES

IO_READ_RATE Process read rate, in bytes per second. DISK READ

IO_WRITE_RATE Process write rate, in bytes per second. DISK WRITE

IO_RATE Process total I/O rate, in bytes per second. DISK R/W

IO_PRIORITY Process I/O priority. IO

To add a parameter, select it and press F5 or Enter. To remove a parameter from Active Columns, select

it and press F9.

5. When you finish managing columns, press F10 to save the changes and view the output.

90

3.6. Managing Containers Memory Parameters

3.5.5 Setting I/O Limits for Backup and Migration Operations

Backup and migration operations with containers and virtual machines can generate a high I/O load on the

server, thus reducing the performance of other virtual environments or the server itself. You can avoid such

situations by setting I/O limits for these operations.

To set an I/O limit, do the following:

1. In the /etc/vz/vz.conf global configuration file, locate the following section:

VZ Tools limits
<...>
Uncomment next line to specify required disk IO bandwidth in Bps (10485760 - 10MBps)
VZ_TOOLS_IOLIMIT=10485760

2. Uncomment the VZ_TOOLS_IOLIMIT parameter, and set the I/O limit for backup and migration operations

in bytes per second.

3. Save the file.

When setting I/O limits, pay attention to the following:

• VZ_TOOLS_IOLIMIT is a global parameter that has effect on all virtual environments on the server.

• The VZ_TOOLS_IOLIMIT parameter controls the I/O load only for backup and migration operations.

Restore operations are not limited.

• Simultaneous operations do not share the limit and are limited separately.

• For migration, only the limit set on the source server applies, while the limit set on the destination

server is ignored.

3.6 Managing Containers Memory Parameters
This section describes the VSwap memory management system. You will learn to do the following:

• Configure the main VSwap parameters for containers.

• Set the memory allocation limit in containers.

• Configure OOM killer behavior.

• Enhance the VSwap functionality.

91

Chapter 3. Managing Resources

3.6.1 Configuring Main VSwap Parameters

Virtuozzo utilizes the VSwap scheme for managing memory-related parameters in containers. Like many

other memory management schemes used on standalone Linux computers, this scheme is based on two

main parameters:

• RAM determines the total size of RAM that can be used by the processes of a container.

• swap determines the total size of swap that can be used by a container for swapping out memory once

the RAM is exceeded.

The memory management scheme works as follows:

1. You set for a container a certain amount of RAM and swap space that can be used by the processes

running in the container.

2. When the container exceeds the RAM limit set for it, the swapping process starts. The swapping process

for containers slightly differs from that on a standalone computer. The container swap file is virtual

and, if possible, resides in the Node RAM. In other words, when the swap-out for a container starts and

the Node has enough RAM to keep the swap file, the swap file is stored in the Node RAM rather than on

the hard drive.

3. Once the container exceeds its swap limit, the system invokes the OOM Killer for this container.

4. The OOM Killer chooses one or more processes running in the affected container and forcibly kills them.

By default, any newly created container starts using the new memory management scheme. To find out the

amount of RAM and swap space set for a container, you can check the values of the PHYSPAGES and SWAPPAGES

parameters in the container configuration file, for example:

grep PHYSPAGES /etc/vz/conf/26bc47f6-353f-444b-bc35-b634a88dbbcc.conf
PHYSPAGES="65536:65536"
grep SWAPPAGES /etc/vz/conf/26bc47f6-353f-444b-bc35-b634a88dbbcc.conf
SWAPPAGES="65536"

In this example, the value of the PHYSPAGES parameter for the container MyCT is set to 65536. The PHYSPAGES

parameter displays the amount of RAM in 4-KB pages, so the total amount of RAM set for the container MyCT

equals to 256 MB. The value of the SWAPPAGES parameter is also set to 256 MB.

To configure the amounts of RAM and swap space for the container MyCT, use the --memsize and --swappages

options of the prlctl set command. For example, you can execute the following command to set the

amount of RAM and SWAP in the container MyCT to 1 GB and 512 MB, respectively:

92

3.6. Managing Containers Memory Parameters

prlctl set MyCT --memsize 1G --swappages 512M

3.6.2 Configuring Container Memory Guarantees

A memory guarantee is a percentage of container’s RAM that said container is guaranteed to have.

....

Important: The total memory guaranteed to all running virtual environments on the host must not

exceed host’s physical RAM size. If starting a virtual environment with a memory guarantee would

increase the total memory guarantee on the host beyond host’s physical RAM size, said virtual

environment will not start. If setting a memory guarantee for a running virtual environment would

increase the total memory guarantee on the host beyond host’s physical RAM size, said memory

guarantee will not be set.

For containers, the memory guarantee value is set to 0% by default. To change the default value, use the

prlctl set --memguarantee command. For example:

prlctl set MyCT --memguarantee 80

To revert to the default setting, run

prlctl set MyCT --memguarantee auto

3.6.3 Configuring Container Memory Allocation Limit

When an application starts in a container, it allocates a certain amount of memory for its needs. Usually, the

allocated memory is much more than the application actually requires for its execution. This may lead to a

situation when you cannot run an application in the container even if it has enough free memory. To deal

with such situations, the VSwap memory management scheme introduces the new vm_overcommit option.

Using it, you can configure the amount of memory applications in a container may allocate, irrespective of

the amount of RAM and swap space assigned to the container.

The amount of memory that can be allocated by applications of a container is the sum of RAM and swap

space set for this container multiplied by a memory overcommit factor. In the default (basic) container

configuration file, this factor is set to 1.5. For example, if a container is based on the default configuration file

and assigned 1 GB of RAM and 512 MB of swap, the memory allocation limit for the container will be 2304

MB. You can configure this limit and set it, for example, to 3 GB by running this command:

93

Chapter 3. Managing Resources

vzctl set MyCT --vm_overcommit 2 --save

This command uses the factor of 2 to increase the memory allocation limit to 3 GB:

(1 GB of RAM + 512 MB of swap) * 2 = 3 GB

Now applications in the container MyCT can allocate up to 3 GB of memory, if necessary.

3.6.4 Configuring Container OOM Killer Behavior

The OOM killer selects a container process (or processes) to end based on the badness reflected in

/proc/<pid>/oom_score. The badness is calculated using process memory, total memory, and badness

adjustment, and then clipped to the range from 0 to 1000. Each badness point stands for one thousandth of

container memory. The process to be killed is the one with the highest resulting badness.

The OOM killer for container processes can be configured using the /etc/vz/oom-groups.conf file that lists

patterns based on which badness adjustment is selected for each running process. Each pattern takes a

single line and includes the following columns:

• <command>, mask for the task command name;

• <parent>, mask for the parent task name;

• <oom_uid>, task user identifier (UID) filter:

• If <oom_uid> is -1, the pattern will be applicable to tasks with any UIDs,

• If <oom_uid> is 0 or higher, the pattern will be applicable to tasks with UIDs equal to the <oom_uid>

value,

• If <oom_uid> is smaller than -1, the pattern will be applicable to tasks with UIDs smaller than the

negative <oom_uid> value);

• <oom_score_adj> badness adjustment. As with badness itself, each adjustment point stands for one

thousandth of total container memory. Negative adjustment values reduce process badness. In an

out-of-memory situation, an adjustment will guarantee that the process will be allowed to occupy at

least <oom_score_adj> thousandths of container memory while there are other processes with higher

badness running in the container.

....

Note: The <command> and <parent>masks support wildcard suffixes: asterisk matches any suffix. E.g.,

“foo” matches only “foo”, “foo*” matches “foo” and “foobar”.

94

3.7. Managing Virtual Machines Memory Parameters

For example, the pattern

sshd init -500 -100

means that in an out-of-memory situation, sshd, a child of init, will be guaranteed at least 100 thousandths

(i.e., 10%) of container memory, if its UID is smaller than -(-500) or just 500, e.g., 499. According to RHEL

conventions, UIDs from 1 to 499 are usually reserved for system use, so such delimitation may be useful to

prioritize and save system processes.

While calculating the badness of a process, the OOM killer searches /proc/vz/oom_score_adj for a suitable

pattern based on masks and task UID filter. The search starts from the first line and ends when the first

suitable pattern is found. The corresponding adjustment value is then used to obtain the resulting process

badness.

The data from /etc/vz/oom-groups.conf is reset and committed to the kernel on boot. To reset and commit

the config file manually, you can use the following command:

cat /etc/vz/oom-groups.conf > /proc/vz/oom_score_adj

3.6.5 Tuning VSwap

The VSwap management scheme can be extended by using UBC parameters. For example, you can set the

numproc parameter to configure the maximal number of processes and threads a container may create or the

numfile parameter to specify the number of files that may be opened by all processes in the container.

3.7 Managing Virtual Machines Memory
Parameters
This section describes how to configure memory parameters available for virtual machines:

• memory size,

• video memory size,

• memory hotplugging,

• memory guarantees.

95

Chapter 3. Managing Resources

3.7.1 Configuring Virtual Machine Memory Size

To increase or reduce the amount of memory that will be available to the virtual machine, use the --memsize

option of the prlctl set command. The following example shows how to increase the RAM of the virtual

machine MyVM from 1GB to 2GB and check that the new value has been successfully set:

prlctl list -i MyVM | grep memory
memory 1024Mb
prlctl set MyVM --memsize 2048
Set the memsize parameter to 2048Mb
The VM has been successfully configured.
prlctl list -i MyVM | grep memory
memory 2048Mb

The changes are saved in the VM configuration file and applied to the VM on start. If the VM is running, it will

need to be rebooted. To be able to increase or reduce virtual machine RAM size without reboot, enable

memory hotplugging as described in Enabling Virtual Machine Memory Hotplugging on page 97.

....

Note: The value set with prlctl --memsize is not reported inside the VM as physical or other RAM size.

A user logged in to the guest OS will see as much physical RAM as can be obtained by fully deflating the

balloon (see MaxNumaSize in Enabling Virtual Machine Memory Hotplugging on page 97). The balloon size

is not reported inside the VM as well. However, if the balloon is not fully deflated, a part of the reported

physical RAM will appear to be occupied at all times (by what is in fact the balloon).

3.7.2 Configuring Virtual Machine Video Memory Size

To set the amount of video memory to be available to the virtual machine’s video card, use the --videosize

option of the prlctl set command. Assuming that the current video memory size of the virtual machine MyVM

is set to 32 MB, you can increase it to 64 MB by running the following command:

prlctl set MyVM --videosize 64

To check that the new value has been successfully set, use this command:

prlctl list -i MyVM | grep video
video 64Mb

96

3.7. Managing Virtual Machines Memory Parameters

3.7.3 Enabling Virtual Machine Memory Hotplugging

Memory hotplugging allows increasing or reducing virtual machine RAM size on the fly, without the need to

reboot the VM. Memory hotplugging is implemented as a combination of ballooning and addition/removal of

virtual DIMM slots.

The algorithm is as follows. When a command to increase VM memory size to RAM_size is run (as described

in Configuring Virtual Machine Memory Size on page 96), the memory is first expanded by deflating the VM’s

balloon. The balloon deflation limit, MaxNumaSize, is calculated automatically according to the formula

MaxNumaSize = (RAM_size + 4GB) rounded up to a multiple of 4GB

If fully deflating the balloon is not enough to obtain RAM_size (that is, RAM_size exceeds MaxNumaSize), then

memory is further expanded by adding virtual DIMM slots (up to twice the MaxNumaSize) and MaxNumaSize

is set equal to RAM_size (that is, the maximum balloon size grows as well). When a command to decrease VM

memory size is run, the memory is shrunk by inflating the VM’s balloon. The added virtual DIMM slots remain

until VM restart. After restart, the VM has memory equal to RAM_size.

This feature is only supported for virtual machines with at least 1GB of RAM and is disabled by default. To

enable it for a virtual machine (e.g., MyVM):

1. Make sure the VM is stopped.

2. Run

prlctl set MyVM --mem-hotplug on

3. Start the VM.

Now virtual machine RAM size can be increased and decreased with the prlctl set --memsize command

without rebooting the VM.

3.7.4 Configuring Virtual Machine Memory Guarantees

A memory guarantee is a percentage of virtual machine’s RAM that said VM is guaranteed to have.

97

Chapter 3. Managing Resources

....

Important: The total memory guaranteed to all running virtual environments on the host must not

exceed host’s physical RAM size. If starting a virtual environment with a memory guarantee would

increase the total memory guarantee on the host beyond host’s physical RAM size, said virtual

environment will not start. If setting a memory guarantee for a running virtual environment would

increase the total memory guarantee on the host beyond host’s physical RAM size, said memory

guarantee will not be set.

For virtual machines, the memory guarantee value is set to 80% by default. To change the default value, use

the prlctl set --memguarantee command. For example:

prlctl set MyVM --memguarantee 60

To revert to the default setting, run

prlctl set MyVM --memguarantee auto

....

Note: Virtual machines with memory guarantees can only be started with prlctl start. Starting such

VMs differently (e.g., using virsh) will result in memory guarantees not being applied.

3.8 Managing Container Resource
Configuration
Any container is configured by means of its own configuration file. You can manage container configurations

in a number of ways:

1. Using configuration sample files shipped with Virtuozzo. These files are used when a new container is

being created (for details, see Virtuozzo Containers on page 3). Currently, the following configuration

sample files are provided:

• basic for creating standard containers.

• confixx for creating containers that are to run the Confixx control panel.

• vswap.plesk for creating containers with the Plesk control panel.

• vswap.256MB for creating containers with 256 MB of main memory.

• vswap.512Mb for creating containers with 512 MB of main memory.

98

3.8. Managing Container Resource Configuration

• vswap.1024Mb for creating containers with 1024 MB of main memory.

• vswap.2048Mb for creating containers with 2048 MB of main memory.

....
Note: Configuration sample files cannot contain spaces in their names.

Any sample configuration file can also be applied to an existing container. You would do this if, for

example, you want to upgrade or downgrade the overall resources configuration of a particular

container:

prlctl set MyCT --applyconfig basic

This command applies all the parameters from the ve-basic.conf-sample file to the container MyCT.

When you install Virtuozzo on your hardware node, the default container samples are put to the

/etc/vz/conf directory. They have the following format: ve-<name>.conf-sample (for example,

ve-basic.conf-sample).

2. Using specific utilities for preparing configuration files in their entirety. The tasks these utilities perform

are described in the following subsections of this section.

3. The direct creating and editing of the corresponding container configuration file

(/etc/vz/conf/<UUID>.conf). This can be performed with the help of any text editor. The instructions on

how to edit container configuration files directly are provided in the four preceding sections. In this

case you have to edit all the configuration parameters separately, one by one.

3.8.1 Splitting Server Into Equal Pieces

Using the vzsplit command, you can create configurations for containers that would take a specific fraction

of the hardware node resources. For example, to create a configuration myconf for up to 20 containers:

vzsplit -n 20 -f myconf
Config /etc/vz/conf/ve-myconf.conf-sample was created

The configuration is calculated based on the hardware node resources. You can now use the --config myconf

option of the prlctl create command to create containers based on this configuration.

3.8.2 Applying New Configuration Samples to Containers

Virtuozzo allows you to change the configuration sample file a container is based on and, thus, to modify all

the resources the container may consume and/or allocate at once. For example, if the container MyCT is

99

Chapter 3. Managing Resources

currently based on the basic configuration sample and you are planning to run the Plesk application inside

the container, you may wish to apply the vswap.plesk sample to it instead of basic, which will automatically

adjust the necessary container resource parameters for running the Plesk application inside the container

MyCT. To do this, you can execute the following command on the hardware node:

prlctl set MyCT --applyconfig vswap.plesk

This command reads the resource parameters from the ve-vswap.plesk.conf-sample file located in the

/etc/vz/conf directory and applies them one by one to the container MyCT.

When applying new configuration samples to containers, keep in mind the following:

• All container sample files are located in the /etc/vz/conf directory on the hardware node and are

named according to the following pattern: ve-<name>.conf-sample. You should specify only the <name>

part of the corresponding sample name after the --applyconfig option (vswap.plesk in the example

above).

• The --applyconfig option applies all the parameters from the specified sample file to the given

container, except for the OSTEMPLATE, TEMPLATES, VE_ROOT, VE_PRIVATE, HOSTNAME, IP_ADDRESS, TEMPLATE,

NETIF parameters (if they exist in the sample file).

You may need to restart your container depending on the fact whether the changes for the selected

parameters can be set on the fly or not. If some parameters could not be configured on the fly, you will be

presented with the corresponding message informing you of this fact.

3.9 Managing Virtual Machine Configuration
Samples
The configuration of a virtual machine is defined by its config.pvs configuration file. This file in XML format is

automatically created when you make a new virtual machine and contains all parameters of the virtual

machine: memory, CPU, disk space, and so on.

Once a virtual machine is created, you can manually configure its parameters using the prlctl utility.

However, if you need to configure multiple parameters for several virtual machines, this may become a

tedious task. To facilitate your work, you can create virtual machine samples and use them to quickly and

easily change the configuration of virtual machines. You can even further simplify the configuration process

by creating a virtual machine template and several sample files. In this case, you can quickly make a new

100

3.9. Managing Virtual Machine Configuration Samples

virtual machine on the basis of your template and apply the desired configuration file to it.

3.9.1 Creating a Configuration Sample

Before you can start using virtual machine configuration samples, you need to create at least one

configuration sample. The easiest way of doing this is to follow the steps below:

1. Create a virtual machine configuration, for example:

prlctl create VmConfiguration

2. Set the parameters for the virtual machine configuration as you want them to be. For example, you can

use the prlctl set command to set the required amount of memory and disk space. All your

parameters are saved to the config.pvs file of the VmConfiguration virtual machine. For the list of

parameters that can be applied from a configuration sample, see Parameters Applied from Configuration

Samples on page 101 below.

3. Copy the config.pvs file to the /etc/Parallels/samples directory. If this directory does not exist, create

it:

mkdir /etc/Parallels/samples
cp /vz/vmprivate/<VmConfiguration_UUID>/config.pvs /etc/Parallels/samples/configMySQL.pvs

The latter command copies the config.pvs file to the configMySQL.pvs file.

3.9.2 Applying Configuration Samples to Virtual Machines

Now that you have created the configuration sample, you can apply it to any of your virtual machines. You

can do this using the --applyconfig option with the prlctl set command and specifying the sample name

without the .pvs extension. For example, to apply the configMySQL sample to the VM1 virtual machine, you can

run this command:

prlctl set VM1 --applyconfig configMySQL

You can apply configuration samples to stopped virtual machines only.

3.9.3 Parameters Applied from Configuration Samples

The following parameters are applied to a virtual machine from a new configuration sample:

101

Chapter 3. Managing Resources

• All memory-related parameters (both RAM and video). To view these parameters in a sample file, locate

the <Memory> and <Video> elements.

• All CPU-related parameters. To view these parameters in a sample file, locate the <Cpu> element.

• IO and IOPS parameters. To view these parameters in a sample file, locate the <IoLimit> and

<IopsLimit> elements, respectively.

• Disk space parameter. To view this parameter in a sample file, locate the <Size> element enclosed in

the <Hdd> element:

<Hdd id=0" dyn_lists="Partition 0">
<Index>0</Index>
<Size>65536</Size>
</Hdd>

The virtual disk to which the value of the <Size> element is applied is defined by the index number in the

<Index> element. For example, in the example above, the disk space parameter (65536 MB) is applied to the

virtual disk with index number 0. If the virtual machine does not have a virtual disk with the specified index,

the parameter is ignored.

3.10 Monitoring Resources
In Virtuozzo, you can use the vztop utility to monitor system resources in real time. When executed, the

utility displays information about processor, swap and memory usage, number of tasks, load average, and

uptime at the top of the screen. You can change the default meters by pressing F2 or S. For example, you can

run the following command on the server to view your current system resources:

vztop
1 [0.0%] Tasks: 77, 65 thr; 1 running
2 [||| 2.6%] Load average: 0.02 0.03 0.05
3 [|||| 4.6%] Uptime: 06:46:48
4 [| 0.7%]
Mem[||||||||||||||||||||| 344M/3.68G]
Swp[0K/3.87G]

The numbers on the left represent the number of CPUs/cores in the system. The progress bar shows their

load and can be comprised of different colors. By default, the CPU progress bar is displayed in four colors:

• blue - low priority processes,

• green - normal priority (user) processes,

• red - kernel processes,

102

3.10. Monitoring Resources

• cyan - virtualization time.

The memory progress bar is comprised of three colors:

• green - used memory pages,

• blue - buffer pages,

• yellow/orange - cache pages.

The swap progress bar include only one color, red, which denotes used swap space.

The command output is updated in intervals set with the -d option in tenths of a second. If the -d option is

omitted, the default interval is 1 second (i.e. -d 10).

103

CHAPTER 4

Managing Services and
Processes

This chapter provides information on what services and processes are, how they influence the operation and

performance of your system, and what tasks they perform in the system.

You will learn how to use the command line utilities in order to manage services and processes in Virtuozzo.

In particular, you will learn how to monitor active processes in your system, change the mode of the

xinetd-dependent services, identify the container UUID where a process is running by the process ID, start,

stop, or restart services and processes, and edit the service run levels.

4.1 What Are Services and Processes
Instances of any programs currently running in the system are referred to as processes. A process can be

regarded as the virtual address space and the control information necessary for the execution of a program.

A typical example of a process is the vi application running on your server or inside your Linux-based

containers. Along with common processes, there are a great number of processes that provide an interface

for other processes to call. They are called services. In many cases, services act as the brains behind many

crucial system processes. They typically spend most of their time waiting for an event to occur or for a period

when they are scheduled to perform some task. Many services provide the possibility for other servers on

the network to connect to the given one via various network protocols. For example, the nfs service provides

the NFS server functionality allowing file sharing in TCP/IP networks.

You may also come across the term “daemon” that is widely used in connection with processes and services.

This term refers to a software program used for performing a specific function on the server system and is

104

4.2. Main Operations on Services and Processes

usually used as a synonym for “service”. It can be easily identified by d at the end of its name. For example,

httpd (HTTP daemon) represents a program that runs in the background of your system and waits for

incoming requests to a web server. The daemon answers the requests automatically and serves the

hypertext and multimedia documents over the Internet using HTTP.

When working with services, you should keep in mind the following. During the lifetime of a service, it uses

many system resources. It uses the CPUs in the system to run its instructions and the system’s physical

memory to hold itself and its data. It opens and uses files within the file systems and may directly or indirectly

use certain physical devices in the system. Therefore, in order not to decrease your system performance, you

should run only those services on the hardware node that are really needed at the moment.

Besides, you should always remember that running services in the Host OS is much more dangerous than

running them in virtual machines and containers. In case violators get access to one of the virtual machines

and containers through any running service, they will be able to damage only the virtual machine or

container where this service is running, but not the other virtual machines and containers on your server.

The hardware node itself will also remain unhurt. And if the service were running on the hardware node, it

would damage both the server and all virtual machines and containers residing on it. Thus, you should make

sure that you run only those services on the server that are really necessary for its proper functioning.

Launch all additional services you need at the moment inside separate virtual machines and containers. It

can significantly improve your system safety.

4.2 Main Operations on Services and
Processes
The ability to monitor and control processes and services in your system is essential because of the profound

influence they have on the operation and performance of your whole system. The more you know about

what each process or service is up to, the easier it will be to pinpoint and solve problems when they creep in.

The most common tasks associated with managing services running on the hardware node or inside a virtual

machine or container are starting, stopping, enabling, and disabling a service. For example, you might need

to start a service in order to use certain server-based applications, or you might need to stop or pause a

service in order to perform testing or to troubleshoot a problem.

For xinetd-dependent services, you do not start and stop but enable and disable services. The services

enabled in this way are started and stopped on the basis of the corresponding state of the xinetd daemon.

105

Chapter 4. Managing Services and Processes

Disabled services are not started whatever the xinetd state.

In Virtuozzo, you can manage services on the hardware node and inside containers by means of special Linux

command-line utilities. You can do it either locally or from any server connected on the network.

As for processes, such Virtuozzo utilities as vzps, vztop, vzpid enable you to see what a process is doing and

to control it. Sometimes, your system may experience problems such as slowness or instability, and using

these utilities can help you improve your ability to track down the causes. It goes without saying that in

Virtuozzo you can perform all those operations on processes you can do in a normal system, for example, kill

a process by sending a terminate signal to it.

4.3 Managing Processes and Services
In Virtuozzo, services and processes can be managed using the following command-line utilities:

• vzps

• vzpid

• vztop

With their help, you can perform the following tasks:

• print the information about active processes on your hardware node,

• view the processes activity in real time,

• change the mode of the services that can be either xinetd-dependent or standalone,

• identify the container UUID where a process is running by the process ID.

....
Note: The maximum number of processes per container is limited to 131,072.

4.3.1 Viewing Active Processes and Services

The vzps utility provides certain additional functionality related to monitoring separate containers running on

the hardware node. For example, you can use the -E switch with the vzps utility to:

• display the container UUIDs where the processes are running

106

4.3. Managing Processes and Services

• view the processes running inside a particular container

vzps prints the information about active processes on your hardware node. When run without any options,

vzps lists only those processes that are running on the current terminal. Below is an example output of vzps:

vzps
PID TTY TIME CMD

4684 pts/1 00:00:00 bash
27107 pts/1 00:00:00 vzps

Currently, the only processes assigned to the user/terminal are the bash shell and the vzps command itself. In

the output, the PID (Process ID), TTY, TIME, and CMD fields are contained. TTY denotes which terminal the

process is running on, TIME shows how much CPU time the process has used, and CMD is the name of the

command that started the process.

....

Note: The IDs of the processes running inside containers and displayed by running the vzps

command on the hardware node does not coincide with the IDs of the same processes shown by

running the ps command inside these containers.

As you can see, the standard vzps command just lists the basics. To get more details about the processes

running on your server, you will need to pass some command line arguments to vzps. For example, using the

aux arguments with this command displays processes started by other users (a), processes with no terminal

or one different from yours (x), the user who started the process and when it began (u).

vzps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 1516 128 ? S Jul14 0:37 init
root 5 0.0 0.0 0 0 ? S Jul14 0:03 [ubstatd]
root 6 0.0 0.0 0 0 ? S Jul14 3:20 [kswapd]
#27 7 0.0 0.0 0 0 ? S Jul14 0:00 [bdflush]
root 9 0.0 0.0 0 0 ? S Jul14 0:00 [kinoded]
root 1574 0.0 0.1 218 140 pts/4 S 09:30 0:00 -bash

There is a lot more information now. The fields USER, %CPU, %MEM, VSZ, RSS, STAT, and START have been

added. Let us take a quick look at what they tell us.

The USER field shows you which user initiated the command. Many processes begin at system start time and

often list root or some system account as the user. Other processes are, of course, run by actual users.

The %CPU, %MEM, VSZ, and RSS fields all deal with system resources. First, you can see what percentage of

the CPU the process is currently utilizing. Along with CPU utilization, you can see the current memory

utilization and its VSZ (virtual memory size) and RSS (resident set size). VSZ is the amount of memory the

program would take up if it were all in memory. RSS is the actual amount currently in memory. Knowing how

much a process is currently eating will help determine if it is acting normally or has spun out of control.

107

Chapter 4. Managing Services and Processes

You will notice a question mark in most of the TTY fields in the vzps aux output. This is because most of these

programs were started at boot time and/or by initialization scripts. The controlling terminal does not exist for

these processes; thus, the question mark. On the other hand, the bash command has a TTY value of pts/4.

This is a command being run from a remote connection and has a terminal associated with it. This

information is helpful for you when you have more than one connection open to the machine and want to

determine which window a command is running in.

STAT shows the current status of a process. In our example, many are sleeping, indicated by an S in the STAT

field. This simply means that they are waiting for something. It could be user input or the availability of

system resources. The other most common status is R, meaning that it is currently running.

You can also use the vzps command to view the processes inside any running container. The example below

shows you how to display all active processes inside the container MyCT with UUID

26bc47f6-353f-444b-bc35-b634a88dbbcc:

vzps -E 26bc47f6-353f-444b-bc35-b634a88dbbcc
CTID PID TTY TIME CMD

26bc47f6-353f-444b-bc35-b634a88dbbcc 14663 ? 00:00:00 init
26bc47f6-353f-444b-bc35-b634a88dbbcc 14675 ? 00:00:00 kthreadd/26bc47
26bc47f6-353f-444b-bc35-b634a88dbbcc 14676 ? 00:00:00 khelper
26bc47f6-353f-444b-bc35-b634a88dbbcc 14797 ? 00:00:00 udevd
26bc47f6-353f-444b-bc35-b634a88dbbcc 15048 ? 00:00:00 rsyslogd
26bc47f6-353f-444b-bc35-b634a88dbbcc 15080 ? 00:00:00 sshd
26bc47f6-353f-444b-bc35-b634a88dbbcc 15088 ? 00:00:00 xinetd
26bc47f6-353f-444b-bc35-b634a88dbbcc 15097 ? 00:00:00 saslauthd
26bc47f6-353f-444b-bc35-b634a88dbbcc 15098 ? 00:00:00 saslauthd
26bc47f6-353f-444b-bc35-b634a88dbbcc 15116 ? 00:00:00 sendmail
26bc47f6-353f-444b-bc35-b634a88dbbcc 15125 ? 00:00:00 sendmail
26bc47f6-353f-444b-bc35-b634a88dbbcc 15134 ? 00:00:00 httpd
26bc47f6-353f-444b-bc35-b634a88dbbcc 15139 ? 00:00:00 httpd
26bc47f6-353f-444b-bc35-b634a88dbbcc 15144 ? 00:00:00 crond
26bc47f6-353f-444b-bc35-b634a88dbbcc 15151 ? 00:00:00 mingetty
26bc47f6-353f-444b-bc35-b634a88dbbcc 15152 ? 00:00:00 mingetty

4.3.2 Monitoring Processes in Real Time

The vztop utility is rather similar to vzps but is usually started full-screen and updates continuously with

process information. This can help with programs that may infrequently cause problems and can be hard to

see with vzps. Overall system information is also presented, which makes a nice place to start looking for

problems.

The vztop utility can be used just as the standard Linux htop utility. It shows a dynamic list of all processes

running on the system with their full command lines.

108

4.3. Managing Processes and Services

By default, it shows information about processor, swap and memory usage, number of tasks, load average,

and uptime at the top of the screen. You can change the default meters, along with display options, color

schemes, and columns at the setup screen (S or F2).

vztop can be used interactively for sending signals to processes. For example, you can kill

processes—without knowing their PIDs—by selecting them and pressing F9. You can also change process

priority by pressing F7 (increase; can only be done by the root user) and F8 (decrease).

The vztop utility usually has an output like the following:

vztop
1 [0.0%] Tasks: 77, 65 thr; 1 running
2 [||| 2.6%] Load average: 0.02 0.03 0.05
3 [|||| 4.6%] Uptime: 06:46:48
4 [| 0.7%]
Mem[||||||||||||||||||||| 344M/3.68G]
Swp[0K/3.87G]

PID CTID USER PRI NI VIRT RES SHR S CPU% MEM% TIME+ Command
1 0 root 20 0 41620 4132 2368 S 0.0 0.1 0:05.91 /usr/lib/systemd/systemd
3164 0 root 20 0 19980 1380 1160 S 0.0 0.0 0:00.32 /usr/1ib/systemd/systemd-
3163 0 root 21 1 1402M 56992 10204 S 0.0 1.5 4:12.41 /usr/libexec/qemu-kvm -na
3186 0 root 20 0 1402M 56992 10204 S 0.0 1.5 0:00.09 /usr/libexec/qemu-kvm -na
3185 0 root 20 0 1402M 56992 10204 S 0.7 1.5 2:16.83 /usr/libexec/qemu-kvm -na
3180 0 root 20 0 1402M 56992 10204 S 0.0 1.5 0:00.00 /usr/libexec/qemu-kvm -na
3084 0 smmsp 20 0 85712 2036 516 S 0.0 0.1 0:00.19 sendmail: Queue runner@01
3064 0 root 20 0 98M 2380 572 S 0.0 0.1 0:01.43 sendmail: accepting conne
3036 0 root 20 0 291M 4788 3580 S 0.0 0.1 0:00.00 /usr/sbin/virt1ogd
3037 0 root 20 0 291M 4788 3580 S 0.0 0.1 0:00.00 /usr/sbin/virt1ogd
2787 0 nobody20 0 15548 896 704 S 0.0 0.0 0:00.14 /sbin/dnsmasq --conf-file
2788 0 root 20 0 15520 184 0 S 0.0 0.0 0:00.00 /sbin/dnsmasq --conf-file
2479 0 root 20 0 1962M 33344 24160 S 0.7 0.9 3:13.12 /usr/sbin/pr1_disp_servic
9022 0 root 20 0 1962M 33344 24160 S 0.0 0.9 0:10.74 /usr/sbin/pr1_disp_servic

The column CTID shows the container UUID inside which the process is running (the value 0means that the

process is running on the server), PRI (PRIORITY) displays the kernel’s internal priority for the process, and NI

(NICE) shows the nice value (the nicer the process, the more it lets other processes take priority).

To organize processes by parenthood, you can switch to the tree view by pressing F5.

4.3.3 Determining Container UUIDs by Process IDs

Each process is identified by a unique PID (process identifier), which is the entry of that process in the

kernel’s process table. For example, when you start Apache, it is assigned a process ID. This PID is then used

to monitor and control this program. The PID is always a positive integer. In Virtuozzo, you can use the vzpid

109

Chapter 4. Managing Services and Processes

(retrieve process ID) utility to print the container UUID the process with the given id belongs to. Multiple

process IDs can be specified as arguments. In this case the utility will print the container number for each of

the processes.

The typical output of the vzpid utility is shown below:

vzpid 14663
Pid VEID Name
14663 26bc47f6-... init

....

Note: You can also display the container UUID where the corresponding process is running by using

the vzps utility.

110

CHAPTER 5

Managing Network

This chapter familiarizes you with the Virtuozzo network structure, lists networking components, and

explains how to manage these components in your working environments. In particular, it provides the

following information:

• How you can manage network adapters on the hardware node.

• What virtual networks are and how you can manage them on the hardware node.

• How to create virtual network adapters inside your virtual machines and containers and configure their

parameters.

• How to connect virtual machines and containers to different networks.

5.1 Managing Network Adapters on the
Hardware Node
Network adapters installed on the hardware node are used to provide virtual machines and containers with

access to each other and to external networks. During the installation, Virtuozzo registers all physical

network adapters available on the server. Once Virtuozzo has been successfully installed, you can manage

network adapters on the hardware node using native RHEL7 utilities. You can also create bond and VLAN

interfaces (for example, with the nmtui tool) and use them instead of physical ones.

111

Chapter 5. Managing Network

....

Important:

1. Each network adapter must have only one configuration file in the

/etc/sysconfig/network-scripts/ directory.

2. When you need to apply changes to network settings, use systemctl restart

NetworkManager.service instead of systemctl restart network. The latter command may result in

issues with both bridged and routed networks.

5.2 Networking Modes in Virtuozzo
This section describes networking modes available in Virtuozzo.

In Virtuozzo, any virtual machine or container can operate in one of the two networking modes: host-routed

or bridged.

5.2.1 Container Network Modes

This section describes bridged and host-routed network modes for containers.

....
Note: IPSec connections inside containers are supported.

5.2.1.1 Host-Routed Mode for Containers

By default, a new container starts operating in the host-routed mode. In this mode, the container uses a

special network adapter, venet0, to communicate with the server where it resides, with the other containers

on the server, and with computers on external networks. The figure below demonstrates an example

network configuration where all containers are set to work in the host-routed mode.

112

5.2. Networking Modes in Virtuozzo

In this configuration:

• Containers #1, #2, and #3 use the venet0 adapter as the default gateway to send and receive data

to/from other networks. They also use this adapter to exchange the traffic between themselves.

• When containers #1, #2, and #3 start, the server creates ARP and routing entries for them in its ARP

and routing tables. You can view the current ARP and routing entries on a server using the arp -n and

route -n commands. For example:

arp -n
Address HWtype HWaddress Flags Mask Iface
10.30.0.4 ether 00:1a:e2:c7:17:c1 C enp0s5
10.30.23.162 ether 70:71:bc:42:f6:a0 C enp0s5
192.168.200.101 * * MP enp0s5
192.168.200.102 * * MP enp0s5
192.168.200.103 * * MP enp0s5

113

Chapter 5. Managing Network

route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
192.168.200.101 * 255.255.255.255 UH 1000 0 0 venet0
192.168.200.102 * 255.255.255.255 UH 1000 0 0 venet0
192.168.200.103 * 255.255.255.255 UH 1000 0 0 venet0
10.30.0.0 * 255.255.0.0 U 0 0 0 enp0s5
default virtuozzo.com 0.0.0.0 UG 0 0 0 enp0s5

As you can see, the ARP and routing tables contain entries about IP addresses 192.168.200.101,

192.168.200.102, and 192.168.200.103 that belong to containers 1, #2, and 3.

• All container outgoing network traffic goes to the venet0 adapter and is forwarded via the enp0s5

physical adapter to the destination, according to the routing table of the server.

• All container incoming network traffic is also processed by the venet0 adapter. Consider the following

situation:

1. Computer X on the local network wants to send a data packet to container #1 with IP address

192.168.200.101, so it issues an ARP request which computer has this IP address.

2. The server hosting container #1 replies with its MAC address.

3. Computer X sends the data packet to the indicated MAC address.

4. The server receives the packet and transmits it to venet0 that forwards the packet to container #1.

5.2.1.2 Bridged Mode for Containers

The default network adapter of a container can operate in the host-routed mode only. You can, however,

create additional virtual adapters in containers and make them operate in the bridged network mode. The

following figure shows an example network configuration where containers #1 and #2 are set to work in the

bridged mode.

114

5.2. Networking Modes in Virtuozzo

In this configuration:

• Container #1 and container #2 have separate virtual adapters consisting of two network interfaces:

• A netif<X> interface in the container (netif1 and netif2 in the figure). This interface represents a

counterpart of a physical network adapter installed on a standalone server. Like any other physical

adapter, it has a MAC address, can be assigned one or more IP addresses, included in different

networks, and so on.

• A veth interface on the hardware node (veth26bc47f6.1 and vethcdb87d9e.1 in the figure). This

interface is mostly used to maintain the communication between the hardware node and Ethernet

interfaces in containers.

....

Note: To simplify things, virtual adapters operating in the bridged mode are called veth

adapters, though it is not quite correct from the technical point of view.

115

Chapter 5. Managing Network

Both interfaces are closely linked to each other, so a data packet entering one interface always comes

out from the other one.

• Containers #1 and #2 keep their own ARP and routing tables that they consult when sending or

receiving data.

• The veth adapters of both containers are bridged through the bridge br0 to the physical network

adapter enp0s5.

• All container outgoing traffic comes via the veth adapters to the bridge and are then transmitted

through the enp0s5 physical adapter to the destination, according to the routing tables stored in the

containers.

• All incoming data packets for container #1 and #2 reach the enp0s5 physical adapter first and are then

sent through the bridge to the veth adapter of the destination container.

5.2.2 Virtual Machine Network Modes

This section describes bridged and host-routed network modes for virtual machines.

5.2.2.1 Bridged Mode for Virtual Machines

By default, a new virtual machine is created with a network adapter that operates in the bridged mode. The

figure below demonstrates an example network configuration where two virtual machines, VM #1 and VM

#2, are configured to work in the bridged mode.

116

5.2. Networking Modes in Virtuozzo

In this configuration:

• Each virtual machine has a separate virtual adapter that exposes two interfaces: (1) an ethX interface in

the virtual machine (eth0 in the figure) and a vme interface on the server (vme7b9a73a1 and vme4980d06a in

the figure). Both interfaces are closely linked to each other, which means that an IP packet entering one

interface always comes out of the other one. An eth adapter has a MAC address, can be assigned one

or more IP addresses, belong to different network environments, and so on.

....

Note: To simplify things, virtual adapters operating in the bridged mode are called vme adapters,

though it is not quite correct from the technical point of view.

• VM #1 and VM #2 keep their own ARP and routing tables that they consult when sending or receiving

data.

• The virtual adapters of both virtual machines are bridged through the bridge br0 to the physical

117

Chapter 5. Managing Network

network adapter enp0s5.

• All outgoing data packets are sent from the virtual machines through the bridge and enp0s5 physical

adapter to the destination, according to their routing tables.

• All incoming data packets for VM #1 and VM #2 reach the enp0s5 physical adapter first and are then

transmitted through the bridge to the vme interface of the destination virtual machine.

5.2.2.2 Host-Routed Mode for Virtual Machines

The other network mode a virtual machine can work in is the host-routed mode. The figure below

demonstrates an example network configuration where two virtual machines, VM #1 and VM #2, are set to

operate in the host-routed mode.

In this configuration:

118

5.2. Networking Modes in Virtuozzo

• Each virtual machine also has a virtual adapter exposing two interfaces: an eth interface in the virtual

machine and a vme interface on the server.

• Unlike the bridged mode, the ARP entries for VM #1 and VM #2 are stored on the server rather than in

the virtual machines themselves. The server creates these ARP entries and saves them to its ARP table

when VM #1 and VM #2 start. You can use the arp -n command to view the current ARP entries on a

server, for example:

arp -n
Address HWtype HWaddress Flags Mask Iface
10.30.0.4 ether 00:1a:e2:c7:17:c1 C eth0
10.30.23.162 ether 70:71:bc:42:f6:a0 C eth0
192.168.200.201 * * MP eth0
192.168.200.202 * * MP eth0

• Along with ARP entries, the server also creates routing entries for both virtual machines. So when the

server receives a data packet destined for IP address 192.168.200.201, it knows that the packet must be

forwarded to the vme7b9a73a1 interface of VM #1.

• The server handles all incoming traffic for both virtual machines. Consider the following situation:

1. Computer X on the network wants to send a data packet to VM #1 with IP address

192.168.200.201, so it issues an ARP request which computer has this IP address.

2. The server replies with its own MAC address.

3. Computer X sends the data packet to the indicated MAC address.

4. The enp0s5 physical adapter receives the packet and routes it to the vme7b9a73a1 interface of VM #1.

• All outgoing network traffic sent from VM #1 and VM #2 are routed through the default gateway to the

enp0s5 adapter on the server. The default gateway for host-routed virtual machines is automatically

assigned the IP address of 169.255.30.1. This special IP address is taken from the Automatic Private IP

Addressing (APIPA) range and used exclusively to deliver data packets from virtual machines to the

server.

5.2.3 Differences Between Host-Routed and Bridged Network Modes

The bridged network mode demonstrates a number of differences as compared to the host-routed one:

• Each veth or vme virtual adapter has a MAC address assigned to it while a host-routed adapter does not

have any. Thanks to this fact:

119

Chapter 5. Managing Network

• Any virtual machine or container can see all broadcast and multicast packets received from or sent

to the selected network adapter on the hardware node.

• Using bridged virtual adapters, you can host DHCP or Samba servers in virtual machines and

containers.

• There is no more need to assign all network settings (IP addresses, subnet mask, gateway, and so on) to

virtual machines and containers from the server. All network parameters can be set from inside virtual

machines and containers.

• veth and vme adapters can be bridged among themselves and with other devices. If several veth and vme

adapters are united into a bridge, this bridge can be used to handle network traffic for the virtual

machines and containers whose veth and vme adapters are included in the bridge.

• Due to the fact that veth and vme adapters act as full members on the network (rather than “hidden”

beyond virtual networks adapters on the server), they are more prone to security vulnerabilities: traffic

sniffing, IP address collisions, and so on. Therefore, veth and vme adapters are recommended for use in

trusted network environments only.

5.3 Configuring Virtual Machines and
Containers in Host-Routed Mode
You can configure the following parameters of network adapters that operate in the host-routed mode:

• IP addresses and network masks

• DNS servers

• DNS search domains

5.3.1 Setting IP Addresses

The session below shows how to set IP addresses for the virtual machine MyVM and the container MyCT

prlctl set MyVM --device-set net0 --ipadd 10.0.186.100/24
prlctl set MyVM --device-set net0 --ipadd 1fe80::20c:29ff:fe01:fb07
prlctl set MyCT --ipadd 10.0.186.101/24
prlctl set MyCT --ipadd fe80::20c:29ff:fe01:fb08

120

5.3. Configuring Virtual Machines and Containers in Host-Routed Mode

net0 in the commands above denotes the network card in the virtual machine MyVM to assign the IP address

to. You can view all network cards of a virtual machine using the prlctl list VM_name -i command. For the

container MyCT, you do not need to specify the network card name; prlctl set automatically performs the

operation on the default adapter that always operates in the host-routed mode.

5.3.2 Setting DNS Server Addresses

To set a DNS server for the virtual machine MyVM and the container MyCT, you can use the following commands:

prlctl set MyVM --device-set net0 --nameserver 192.168.1.165
prlctl set MyCT --nameserver 192.168.1.165

5.3.3 Setting DNS Search Domains

To set a DNS search domain for the virtual machine MyVM and the container MyCT, run these commands:

prlctl set MyVM --device-set net0 --searchdomain 192.168.10.10
prlctl set MyCT --searchdomain 192.168.10.10

....

Note:

1. You can only configure network settings of virtual machines that have Virtuozzo guest tools

installed.

2. Network adapters operating in the routed mode must have at least one static IP address assigned.

3. To be able to assign network masks to containers operating in the venet0 networking mode, set the

USE_VENET_MASK parameter in the /etc/vz/vz.conf configuration file to yes.

4. Containers can only have one network adapter operating in the host-routed mode. This adapter is

automatically created when you create a container.

5. You can set name servers and search domain in /etc/vz/vz.conf with the NAMESERVER and

SEARCHDOMAIN parameters. If set to inherit, the values will be copied from /etc/resolv.conf on the

host.

121

Chapter 5. Managing Network

5.3.3.1 Switching Virtual Machine Adapters to Host-Routed Mode

By default, a virtual adapter in any newly created virtual machine starts operating in the bridged mode (see

Connecting Virtual Environments to Virtual Networks on page 131 for details). To change the current network

mode to host-routed, you can run the following command:

prlctl set <VM_name> --device-set Net_ID --type routed

For example, to set the net0 adapter in the virtual machine MyVM to operate in the host-routed mode, use this

command:

prlctl set MyVM --device-set net0 --type routed

5.4 Configuring Virtual Machines and
Containers in Bridged Mode

....

Important: To create and manage virual networks and virtual network bridges, you must use either

command-line interface or Virtuozzo Automator, but not both.

This section describes all operations related to configuring virtual machines and containers that operate in

bridged mode.

5.4.1 Managing Virtual Networks

A virtual network acts as a binding interface between a virtual network adapter in a virtual machine or

container and the corresponding network adapter on the hardware node. Using virtual networks, you can

include virtual machines and containers in different networks. Virtuozzo enables you to manage virtual

networks as follows:

• Create virtual networks.

• Configure virtual network parameters.

• List existing virtual networks.

• Delete virtual networks.

These operations are described in the following subsections in detail.

122

5.4. Configuring Virtual Machines and Containers in Bridged Mode

5.4.1.1 Creating Virtual Networks

By default, Virtuozzo creates the following virtual networks on the server:

• Bridged virtual network that is connected to one of the physical adapters on the hardware node (e.g.,

enp0s5) and provides virtual machines and containers included in this virtual network with access to the

network behind this physical adapter.

• Host-only virtual network that is connected to a special virtual adapter on the server and allows the

virtual machines and containers joined to this virtual network to access only the server and the other

virtual machines and containers on this network.

You can create your own virtual networks using the prlsrvctl command. For example, to create a new

virtual network network1, you can run:

prlsrvctl net add network1

By default, the command creates a host-only virtual network, but you can change its type if needed (see

Configuring Virtual Network Parameters on page 127).

5.4.1.2 Creating Network Bridges for Network Adapters

To connect a network adapter to a bridged virtual network, you need to create a network bridge first. A

network adapter can be physical (enp<X>s<Y>) or logical: a VLAN (enp<X>s<Y>.<N>) or a bonding interface

(bond<N>).

For example, to create a network bridge for the VLAN interface, you can use the NetworkManager text-based

user interface tool, nmtui, as follows:

1. On the node, start nmtui:

nmtui

In the tool TUI, use the arrow keys and Tab to navigate through the options, Enter to select an option,

and Space to set and clear check boxes.

2. On the NetworkManager TUI screen, select Edit a connection from the menu.

123

Chapter 5. Managing Network

3. On the next screen, select Add to add a new connection.

4. To add a new network bridge, choose Bridge from the drop-down list in the New connection window

and press Create.

5. On the Edit connection screen:

5.1. In the Profile name field, enter the connection profile name. This name with the ifcfg- prefix will

be used for creating the interface configuration file in the /etc/sysconfig/network-scripts/

directory.

5.2. In the Device field, specify the device name of the new network bridge.

124

5.4. Configuring Virtual Machines and Containers in Bridged Mode

5.3. Press Add to specify a slave network interface.

5.4. In the New connection window, choose VLAN from the drop-down list and press Create.

5.5. In the Edit connection window, specify the profile name and device name of the VLAN interface in

the Profile name and Device fields, respectively, and press OK.

The Parent and VLAN ID fields are filled in automatically.

125

Chapter 5. Managing Network

The chosen VLAN interface will appear in the Slaves section.

5.6. Clear the Enable STP (Spanning Tree Protocol) check box.

5.7. Configure static IP parameters of the network bridge:

5.7.1. In the IPv4 CONFIGURATION section, press Automatic and chooseManual from the

drop-down list.

5.7.2. Press Show to expand the section.

5.7.3. Assign a static IP address, set the default gateway and the DNS server for the network bridge in

the corresponding fields.

126

5.4. Configuring Virtual Machines and Containers in Bridged Mode

5.8. Configure other network parameters if required and press OK.

The network bridge for the VLAN adapter will appear in the list of existing connections.

6. To exit nmtui, press Back and then Quit.

After creating the network bridge, you can check its configuration file stored in the

/etc/sysconfig/network-scripts/ directory. For example:

cat /etc/sysconfig/network-scripts/ifcfg-br1

5.4.1.3 Configuring Virtual Network Parameters

Virtuozzo allows you to configure the following parameters for a virtual network:

• The networking mode in which the virtual network is operating.

....

Note: Before changing the virtual network type to bridged, a network bridge must be created for

the virtual network. See Creating Network Bridges for Network Adapters on page 123.

• The description of the virtual network.

127

Chapter 5. Managing Network

All these operations can be performed using the prlsrvctl utility. For example, if you need to configure the

network1 virtual network. This virtual network is currently configured as a host-only network and has the

following description: This is a host-only virtual network. To change these parameters, you can execute

the following command:

prlsrvctl net set network1 -t bridged --ifname enp0s6 -d "This is now a bridged \
virtual network"

This command configured the network1 virtual network as follows:

1. Changes the virtual network type to bridged.

2. Changes the virtual network description to the following: “This is now a bridged virtual network”.

5.4.1.4 Listing Virtual Networks

To list the virtual networks existing on the hardware node, you can use the prlsrvctl utility as shown below.

prlsrvctl net list
Network ID Type Bound To Bridge
Host-Only host-only virbr1
Bridged bridged enp0s5 br0

This utility displays the following information on virtual networks:

Column Description

Network ID The name assigned to the virtual network.

Type The networking mode set for the virtual network.

Bound To The adapter on the hardware node connected to the virtual networks, if any.

5.4.1.5 Connecting Virtual Networks to Adapters

By connecting an adapter on the physical server to a virtual network, you can join all virtual machines and

containers included in the virtual network to the network to which the corresponding adapter is connected.

Consider the following example:

• The enp0s6 physical adapter and the network1 virtual network exist on the hardware node. For

information on creating virtual networks, see Creating Virtual Networks on page 123.

• The enp0s6 physical adapter is connected to the local network.

• The br1 network bridge for the enp0s6 physical adapter is created. For information on creating network

128

5.4. Configuring Virtual Machines and Containers in Bridged Mode

bridges, see Creating Network Bridges for Network Adapters on page 123.

• The container MyCT is connected to the network1 virtual network. Detailed information on joining virtual

machines and containers to virtual networks is given in Connecting Virtual Environments to Virtual

Networks on page 131.

To connect the enp0s6 adapter to the network1 virtual network and thus to join the container MyCT to the

network behind enp0s6, run this command on the server:

prlsrvctl net set network1 -i enp0s6

To check that the enp0s6 physical adapter has been successfully added to the network1 virtual network, you

can execute the following command:

prlsrvctl net list
Network ID Type Bound To Bridge
Host-Only host-only virbr1
Bridged bridged enp0s5 br0
network1 bridged enp0s6 br1

As you can see, the enp0s6 adapter is now joined to the network1 virtual network. That means that the

container MyCT whose virtual network adapter is connected to network1 can access the local network behind

enp0s6.

5.4.1.6 Deleting Virtual Networks

At any time, you can remove a virtual network that you do not need any more from the physical server. To do

this, you can use the prlsrvctl utility. For example, you can delete the network1 virtual network by running

the following command:

prlsrvctl net del network1

To check that network1 has been successfully removed, execute this command:

prlsrvctl net list
Network ID Type Bound To
Host-Only host-only
Bridged bridged enp0s5

5.4.2 Managing Virtual Network Adapters in Virtual Environments

Virtuozzo provides you with ample opportunities of configuring virtual network adapters in virtual

environments and including them in different network environments. This section shows you the way to

129

Chapter 5. Managing Network

perform the following operations:

• Create new virtual network adapters and delete existing ones.

• Configure the parameters of an existing virtual network adapter.

• Join virtual network adapters to virtual networks.

All these operations are described in the following subsections in detail.

5.4.2.1 Creating and Deleting Virtual Adapters

A virtual environment can have up to 15 virtual network adapters. Each adapter can be connected to a

different network. For example, if you need to create a new virtual adapter for the virtual machine MyVM. To

do this, you can execute the following command:

prlctl set MyVM --device-add net

To check that the network adapter (net1) has been successfully added to the virtual machine, run this

command:

prlctl list --info MyVM
ID: {f3b3d134-f512-324b-b0b1-dbd642f5220b}
Name: MyVM
...
net1 (+) dev='vme4208fa77' network='Bridged' mac=001C4208FA77 card=virtio

At any time, you can remove the newly created network adapter (net1) by executing the following command:

prlctl set MyVM --device-del net1

5.4.2.2 Configuring Virtual Adapter Parameters

Virtuozzo allows you to configure the following parameters of virtual adapters:

Configuring MAC Addresses

If you need for some reason to regenerate the current MAC address of a network adapter, you can use the

following command:

prlctl set MyVM --device-set net1 --mac 00:1C:42:2D:74:00

This command sets the MAC address of 00:1C:42:2D:74:00 for the net1 adapter in the virtual machine MyVM. If

do not know what MAC address to assign to your virtual adapter, you can make prlctl set automatically

generate a new MAC address. To do this, run the following command:

130

5.4. Configuring Virtual Machines and Containers in Bridged Mode

prlctl set MyVM --device-set net1 --mac auto

Configuring IP Parameters

As any other standalone server, each virtual environment must have a number of TCP/IP settings configured

in the proper way to successfully operate on the network. These settings include:

• IP address

• default gateway

• DNS server

....

Note: You can configure the network parameters only of virtual machines that have Virtuozzo guest

tools installed.

Usually, you define all these settings when you create a virtual environment. However, if you have not yet set

any of the settings or want to modify any of them, you can use the prlctl set command. For example, you

can execute the following command to assign the IP address of 192.129.129.20 to the net1 adapter in the

virtual machine MyVM, set the default gateway to 192.129.129.1 and the DNS server to 192.192.192.10:

prlctl set MyVM --device-set net1 --ipadd 192.129.129.20 --gw 192.129.129.1 \
--nameserver 192.192.192.10

Along with a static assignment of network parameters to a virtual adapter, you can make the adapter receive

its TCP/IP settings automatically using the Dynamic Host Configuration Protocol (DHCP). For example, you

can run this command to make the net1 adapter in the virtual machine MyVM get its IP settings through DHCP:

prlctl set MyVM --device-set net1 --dhcp yes

5.4.2.3 Connecting Virtual Environments to Virtual Networks

In Virtuozzo, you can connect virtual environments to virtual networks of the following types:

• Bridged virtual network allows a virtual environment to use one of the physical server network adapters,

which makes it appear as a separate computer on the network the corresponding adapter belongs to.

• Host-only virtual network allows a virtual environment to access only the physical server and the virtual

environments joined to this network.

By default, any newly created adapter is connected to the Bridged network. To join a virtual machine to

another network, use the prlctl set command. For example, the following session demonstrates how you

can connect the net0 adapter of the virtual machine MyVM to the network1 virtual network.

131

Chapter 5. Managing Network

Before connecting the virtual machine MyVM to the network1 virtual network, you may wish to check the

network adapter associated with this virtual network. You can do it, for example, using the following

command:

prlsrvctl net list
Network ID Type Bound To
Host-Only host-only
Bridged bridged enp0s5
network1 bridged enp0s6

From the command output, you can see that the network1 virtual network is attached to the enp0s6 physical

adapter on the physical server. That means that, after connecting the virtual machine MyVM to the network1

virtual network, the virtual machine will be able to access all computers on the network where the enp0s6

adapter is connected.

Now you can run the following command to join the net1 adapter of the virtual machine MyVM to the network1

virtual network:

prlctl set MyVM --device-set net1 --network network1

To check that the network adapter (net1) has been successfully joined to the network1 virtual network, execute

prlctl list --info MyVM
ID: {f3b3d134-f512-324b-b0b1-dbd642f5220b}
Name: MyVM
...
net1 (+) dev='vme4208fa77' network='network1' mac=001C4208FA77 card=virtio

132

CHAPTER 6

Managing Licenses

This chapter describes how to install, update, view, and transfer licenses on your servers.

....

Note: If you want to use the Virtuozzo Storage functionality, you need to install a separate license in

addition to a Virtuozzo license. For detailed information on managing Virtuozzo Storage licenses, consult

the Virtuozzo Storage Administrator’s Guide.

6.1 Installing the License
Virtuozzo requires that a different license be installed on each server. You can activate a license during or

after the installation. In the latter case, you can install a license from a product key, an activation code, or a

license file.

If your Virtuozzo node cannot access the Internet directly, you can activate a license via a proxy server.

6.1.1 Setting Up Proxy Server for License Activation

In situations when a direct Internet connection is not possible, you can specify an HTTP proxy to access the

KA server through. To do that, add the HTTP proxy information to the /etc/vz/vz.conf file as follows:

HTTP_PROXY="http://<host>:<port>/"
HTTP_PROXY_USER="<username>"
HTTP_PROXY_PASSWORD="<password>"

133

Chapter 6. Managing Licenses

....

Note:

1. You may need to create /etc/vz/vz.conf first.

2. The proxy server must have the port 5224 approved for SSL traffic.

3. The vzlicutils package is required for license auto-updating to work. If the package is not

installed on your system for some reason, you can install it manually with yum. To enable license

auto-updates after installing the package, launch the vzlicmon service with systemctl start

vzlicmon. The service will show as /usr/sbin/vzlicmonitor in the running processes list.

Once the proxy server is set up, proceed to installing the license.

Virtuozzo licenses are updated automatically by default. A few days before the current license expires, the

vzlicmon service (a part of the vzlicutils RPM package) attempts to contact the Virtuozzo KA server over the

Internet and obtain a new license.

6.1.2 Installing the License from Product Keys, Activation Codes, or License

Files

To install a license from a product key or an activation code, run the vzlicload -p command or, to install

from a license file, the vzlicload -f command. For example:

vzlicload -p <key_or_code>
vzlicload -f <license_file>

When you install a product key or activate a code, a license file is generated and installed in the

etc/vz/licenses/ directory on the server. The difference between the product key and activation code is that

the code needs to be activated online, so the server must be connected to the Internet. To activate the code,

the installation tool accesses the Key Authentication (KA) licensing server and transmits the specified

activation code to it. The KA server generates a license file, sends it back, and the license file is installed on

the server automatically.

6.2 Updating the License
You can use the vzlicupdate utility to update the license currently installed on the server. When executed, the

utility tries to connect to the Key Authentication (KA) server, retrieve a new license, and install it on the server.

134

6.3. Transferring the License to Another Server

To update your license, do the following:

1. Make sure that the host where you wish to update the license is connected to the Internet.

2. Run vzlicupdate on the server (your server must have at least one public IPv4 address).

By default, vzlicupdate tries to access the KA server at ka.virtuozzo.com. However, you can explicitly

specify what KA server to use using the --server option, e.g., vzlicupdate --server ka.server.com.

6.2.1 Switching License to a New HWID

If your Virtuozzo license has become invalid due to changed HWID (e.g., after adding or removing a network

card), you can have the license switch to the new HWID as follows:

vzlicupdate -t -a <activation_code>

6.3 Transferring the License to Another Server
In case you need to transfer a license installed on one server to another server, you can do so as described

below.

If you have a Virtuozzo product key:

1. Remove the installed license from the source server with the vzlicload -r <serial> command (the

serial is shown in vzlicview output).

2. Install the product key on the destination server:

vzlicload -p <product_key>

A new license file will be generated and installed in the /etc/vz/license/ directory on the server.

If you have a Virtuozzo activation code:

1. Shut down the source server or remove the installed license from it with the vzlicload -r <serial>

command (the serial is shown in vzlicview output).

2. Make sure that the destination server is up, connected to the Internet, and has at least one public IPv4

address.

3. On the destination server, run

135

Chapter 6. Managing Licenses

vzlicupdate -t -a <activation_code>

When executed, vzlicupdate sends the activation code to the KA server. The KA server verifies the code,

generates a new license file, sends it back, and the license file is installed on the server automatically.

4. To check that the license transfer has been successful, run vzlicview. The information about the newly

installed license should be displayed.

6.4 Viewing the License
You can use the vzlicview tool to view the information on the installed license and find out its current status.

For example:

vzlicview
Searching for installed licenses...
VZSRV

owner_name="Autogenerated Trial Licenses (Virtuozzo)"
status="ACTIVE"
version=7.0
owner_id=70295522.10134133
hwid="3D6F.FFB2.1CD5.1E47.1325.BBE0.6C66.ACF5"
serial="BF3D.E943.18C5.5555.5D10.99D9.0310.DFA0"
expiration="07/08/2016 03:00:00"
start_date="06/07/2016 03:00:00"
issue_date="06/08/2016 16:27:11"
graceperiod=259200 (259200)
key_number="PSBM.10134133.0001"
cpu_total=8 (1)
ct_total="unlimited" (0)
architecture="x86"
architecture="x86_64"
platform="Linux"
product="PSBM"
nr_vms="unlimited" (2)
subscription="70295522:dd482d1a-5268-4980-ae06-2a288a4fb7ab"

You can also view contents of license files with the vzlicview -f command. The output does not differ from

that in the example above.

The license parameters are described in the following table.

Column Description

owner_name The name of the license owner.

136

6.4. Viewing the License

Column Description

status License status. For description of license statuses, see License Statuses on

page 137.

version The version of Virtuozzo for which the license was issued.

owner_id The ID of the license owner.

hwid Server hardware identifier.

serial License serial number. In particular, used to identify license files in

/etc/vz/licenses/.

expiration License expiration date, if the license is time-limited.

start_date The date on which the license becomes active.

issue_date The date on which the license was issued.

graceperiod Period, in seconds, during which Virtuozzo continues to function after the

license has expired or if the number of running virtual machines and

containers exceeds the limit defined by the license.

license_update_date The date on which the license was last updated.

key_number Number under which the license is registered on the Key Authentication

server.

cpu_total The total number of physical CPUs that the server is allowed to have.

ct_total The total number of containers that are allowed to be simultaneously running

on the server.

architecture System architecture with which the license is compatible.

platform Operating system with which the license is compatible.

product Name of the product for which the license has been issued.

keyserver_host The hostname and port of the Key Authentication server.

nr_vms The number of virtual machines that are allowed to be simultaneously

running on the server.

subscription Virtuozzo feature subscription key.

6.4.1 License Statuses

When viewing information on your licenses, pay special attention to the license status that can be one of the

following:

137

Chapter 6. Managing Licenses

Status Description

Status Description

ACTIVE The license installed on the server is valid and active.

VALID The license is valid and can be installed on the server.

EXPIRED The license has expired and cannot be installed on the server.

GRACED The license is installed on the server but is currently on the grace period

because it has expired or the number of running virtual machines and

containers exceeds the limit defined by the license.

INVALID The license is invalid (e.g., because of server architecture mismatch) or

corrupt.

138

CHAPTER 7

Keeping Your System Up To
Date

This chapter explains the ways to keep your hardware node up to date. The components you need to take

care of are the following:

• Virtuozzo software,

• virtual machines and containers hosted on the server.

To apply major updates that usually include new kernel versions, follow the instructions below:

....

Note: You can find out if a major update is available by running yum info virtuozzo-release and

comparing the Version values of the installed and available packages. If the versions differ in the third

number, for example, 7.0.4 is installed and 7.0.5 is available, a major update has been released.

1. Stop all running virtual environments on the server that is to be updated, or migrate them to other

Virtuozzo 7 servers to avoid their downtime.

2. Update the server as described in Updating All Components on page 141.

3. Restart the server to update the kernel.

4. Start the virtual environments or migrate them back to the updated server, depending on what you did

in step 1.

5. Perform steps 1-4 for other Virtuozzo servers that need to be updated.

....
Note: Steps 1-4 can be also performed via Virtuozzo Automator.

139

Chapter 7. Keeping Your System Up To Date

6. If you use Virtuozzo Automator, update the container va-mn either via VA (see Updating System

software) or by running the following commands on the server:

prlctl exec va-mn yum update
prlctl restart va-mn

7. If you use Virtuozzo Storage management panel, update the container vstorage-ui by running the

following commands on the server:

prlctl exec vstorage-ui yum update
prlctl restart vstorage-ui

7.1 Updating Virtuozzo

....

Important: It is strongly recommended to have every machine run the same version of Virtuozzo. At

the very least make sure that product versions are only one major update apart. For example, before

you update a machine to Virtuozzo 7.0 Update 7, make sure that all other machines in the cluster

already run Update 6. The reason is that VMs created on newer nodes may fail to start on older nodes,

thus causing issues with migration, restore from backup, high availability, and such.

Virtuozzo allows quick and easy updates with the yum tool standard for RPM-compatible Linux operating

systems. The main components you may need to update are the following:

• tools and libraries,

• EZ templates,

• kernel,

• ReadyKernel patch,

• KVM/QEMU hypervisor in running virtual machines.

....
Note: To see which updates are available before installing them, you can run yum check-update.

140

http://docs.virtuozzo.com/virtuozzo_automator_7_administrators_guide/updating-software/updating-system-software.html
http://docs.virtuozzo.com/virtuozzo_automator_7_administrators_guide/updating-software/updating-system-software.html

7.1. Updating Virtuozzo

7.1.1 Updating All Components

The easiest way to update all components of the Virtuozzo software is to run the yum update command. yum

will do the following:

1. Access Virtuozzo repositories.

2. Check for available updates for tools, libraries, EZ templates, Virtuozzo kernel, and the latest

ReadyKernel patch for the current kernel. If a new Virtuozzo kernel is available, check for the

corresponding ReadyKernel patch as well.

3. Install the updates on your system.

7.1.2 Updating Kernel

Updating the Virtuozzo kernel requires updating the vzkernel and vzkernel-devel packages:

yum update vzkernel vzkernel-devel

7.1.3 Updating KVM/QEMU Hypervisor in Virtual Machines

Virtuozzo can update KVM/QEMU hypervisor live in running virtual machines that have KVM/QEMU version

2.6.0 or newer.

To do this, install the vz-qemu-engine-updater package and update the qemu-kvm-vz package:

yum install vz-qemu-engine-updater
yum update qemu-kvm-vz

Updating qemu-kvm-vz starts a 10-minute timer (to give yum time to complete the operation), after which the

vz-qemu-engine-updater tool is started and begins updating KVM/QEMU in each running virtual machine, one

at a time.

Immediate updating may not be possible in several cases:

• yum is currently locked on the node (in this case, no VMs can be updated automatically until the lock is

released),

• a VM is changing states (e.g., from running to stopped),

• configuration changes are being applied to a VM,

141

Chapter 7. Keeping Your System Up To Date

• a backup of a VM is being created, or

• any other prlctl operation is executed on a VM.

The KVM/QEMU updater will skip such VMs and queue them for a later update. The updater will perform a set

number of retries to update VMs that have been skipped, each retry after a set delay. If retries are exhausted

or the update fails for some reason, the virtual machine is left running with the outdated KVM/QEMU.

To manually disable automatic updates, mask the updater service:

systemctl mask vz-qemu-engine-updater.service

To re-enable updates, unmask the updater service:

systemctl unmask vz-qemu-engine-updater.service

To check if virtual machines have been successfully updated, view the log file:

journalctl -u vz-qemu-engine-updater
<...>VM MyVM (was using qemu-kvm-vz-2.6.0-28.3.6.vz7.30) has been successfully updated.
<...>Finished updating VMs.
<...>Successfully updated QEMU engine for all running VMs.

To configure the number of retries, the delay between them, and other parameters, refer to the

vz-qemu-engine-updater.jsonman page and edit the /var/lib/vz-qemu-engine-updater.json configuration

file.

7.1.3.1 Updating KVM/QEMU Hypervisor Manually

If, for some reason, the KVM/QEMU hypervisor was not automatically updated in a running VM, you can do it

manually as follows:

1. Make sure that the VM uses an outdated version of the hypervisor.

Check the version installed on the node:

rpm -qa qemu-kvm-vz
qemu-kvm-vz-<version>.x86_64

And compare it with the version the VM currently uses:

virsh qemu-monitor-command <VM_name> '{"execute":"query-version"}'
<...>"package":" (qemu-kvm-vz-<version>)"}<...>

2. Make sure no prlctl operations are being executed on the VM.

3. Update the hypervisor that the VM uses:

142

7.2. Updating Virtuozzo Kernel with ReadyKernel

prlctl update-qemu <VM_name>

7.1.4 Updating EZ Templates

You can update an EZ template like any other RPM package using the yum update command. For example:

yum update centos-6-x86_64-ez
...
Updated:

centos-6-x86_64-ez.noarch 0:4.7.0-1
Complete!

....

Note:

1. Updating an OS EZ template requires that you append ez to template name.

2. You can also use the vzpkg update template command to update EZ templates.

7.2 Updating Virtuozzo Kernel with
ReadyKernel
Virtuozzo ReadyKernel is a kpatch-based service shipped with Virtuozzo 7 and available out-of-the-box on

hardware nodes with active licenses. ReadyKernel offers a more convenient, rebootless alternative to

updating the kernel the usual way and allows you not to wait for scheduled server downtime to apply critical

security updates. ReadyKernel enables you to receive cumulative kernel patches that fix critical security

issues and apply these patches without having to reboot the server. ReadyKernel updates are released for

Virtuozzo kernels younger than 18 months. When a kernel becomes older, it should be updated, e.g., to the

latest one, so you can keep receiving ReadyKernel updates.

Upon installation, the patches are loaded into server RAM and immediately applied to the kernel. If the

server reboots, these patches are reapplied to the kernel on boot.

If later you install a new kernel or major kernel update that requires a reboot, the downloaded patches will

remain on the server but will not be applied.

....
Note: At any time, you can check the details of the applied ReadyKernel patch with readykernel info.

143

Chapter 7. Keeping Your System Up To Date

ReadyKernel patches can be received and installed automatically or manually as described in the following

sections.

7.2.1 Installing ReadyKernel Patches Automatically

If automatic updating was not disabled during the installation, ReadyKernel will check for new patches daily at

12:00 server time. If a patch is available, ReadyKernel will download, install, and load it for the current kernel.

If automatic updating is disabled, you can re-enable it with the following command:

readykernel autoupdate enable <hour>

The service will check for patches daily at the specified <hour> (set in 24-hour format, server time) by means

of the cron.d script.

To disable automatic updating, run

readykernel autoupdate disable

7.2.2 Managing ReadyKernel Patches Manually

7.2.2.1 Dowloading, Installing, and Loading ReadyKernel Patches

To download, install, and instantly load the latest ReadyKernel patch for the current kernel, do the following:

1. Check for new ReadyKernel patches:

readykernel check-update

2. If a new patch is available, download, install, and instantly load it for the current kernel by running:

readykernel update

....
Note: You can also do this with yum update.

ReadyKernel patches are cumulative, i.e. the latest patch includes all the previous ones. To keep the kernel

secure, you only need to install and load the latest patch.

144

7.2. Updating Virtuozzo Kernel with ReadyKernel

7.2.2.2 Loading and Unloading ReadyKernel Patches

To manually load the latest installed ReadyKernel patch to the kernel, do one of the following:

• If an older patch is already loaded, unload it first, then load the latest patch by running:

readykernel load-replace

• If no older patches are loaded, load the latest patch by running:

readykernel load

To unload the patch from the current kernel, run

readykernel unload

7.2.2.3 Installing and Removing ReadyKernel Patches for Specific Kernels

If multiple kernels are installed on the server, you can install a ReadyKernel patch for a specific kernel:

yum install readykernel-patch-<kernel_version>

To remove a specific ReadyKernel patch from the server, run

yum remove readykernel-patch-<kernel_version>

7.2.2.4 Downgrading ReadyKernel Patches

If you experience problems with the latest ReadyKernel patch, you can downgrade it to an older version if

one is available.

To downgrade a patch for the current kernel to the previous version, run

yum downgrade readykernel-patch-$(uname -r)

To downgrade a patch for a specific kernel to the previous version, run

yum downgrade readykernel-patch-<kernel_version>

You can run these commands multiple times to downgrade to the patch version you need. Alternatively, you

can downgrade a patch to a specific version by specifying the desired patch version. For example:

yum downgrade readykernel-patch-12.7-0.4-17.vl7

145

Chapter 7. Keeping Your System Up To Date

7.2.3 Disabling Loading of ReadyKernel Patches on Boot

If for some reason you do not want ReadyKernel patches to be applied at boot time, run the following

command:

readykernel autoload disable

To re-enable automatic loading of ReadyKernel patches on boot, run

readykernel autoload enable

7.2.4 Managing ReadyKernel Logs

ReadyKernel logs event information in /var/log/messages and /var/log/kpatch.log. You can specify logging

parameters for the latter in the configuration file /etc/logrotate.d/kpatch. For more information on

parameters you can use, see the logrotateman page.

7.3 Updating Software in Virtual Machines
To keep software in your virtual machines up to date, you can use the same means you would use on

standalone computers running the corresponding operating systems:

• In Linux-based virtual machines, you can use the native Linux updaters (up2date, yum, or yast).

• In Windows-based virtual machines, you can use the native Windows updaters (e.g., the Windows

Update tool).

7.3.1 Updating Virtuozzo Guest Tools in Virtual Machines

Starting from Virtuozzo 7.0.4 (Update 4), Virtuozzo guest tools in virtual machines are updated automatically

via a weekly cron job that starts the vz-guest-tools-updater tool.

The following requirements must be met:

• The vz-guest-tools-updater package must be installed on the node.

• The virtual machine must have the --tools-autoupdate parameter set to on (this is the default behavior).

146

7.4. Updating Containers

....

Note: Starting from Virtuozzo 7.0.7 (Update 7), guest tools are also automatically installed in virtual

machines on their next start (see Installing Virtuozzo Guest Tools on page 18). To disable automatic

installation of guest tools, set the InstallTools parameter to false in the /etc/vz/tools-update.conf

configuration file.

The vz-guest-tools-updater tool builds a list of VMs with the enabled --tools-autoupdate parameter and

outdated guest tools. After that, a 5-minute timer triggers simultaneous guest tools update in a configurable

number of VMs. If an update attempt fails, the tool will queue that VM for another try. If the second attempt

fails, the VM’s guest tools will be left outdated.

....

Warning: During the update, Virtuozzo guest tools image is forcibly mounted to VM’s optical disk

drive even if it is already in use.

Windows virtual machines need to be restarted to complete the update of guest tools. On every such update,

administrators inside these VMs receive a reboot notification upon login or immediately if they are logged in.

You can configure the number of VMs whose guest tools are to be updated simultaneously by changing the

value of the MaxVMs parameter in the /etc/vz/tools-update.conf configuration file.

To check the update status of guest tools in one or more VMs, use the --get-state option for the

vz-guest-tools-updater tool and specify VM names in a sequence. For example:

vz-guest-tools-updater --get-state <VM1_name> [<VM2_name> ...]

If the guest tools in the given virtual machine are up to date, the command output will be as follows:

{<VM_UUID>} (<VM_name>): Tools are up to date

To disable automatic updating of Virtuozzo guest tools for a VM, run the following command:

prlctl set <VM_name> --tools-autoupdate off

To manually update guest tools in one or more VMs, start the vz-guest-tools-updater script by specifying VM

names in a sequence. For example:

vz-guest-tools-updater <VM1_name> [<VM2_name> ...]

7.4 Updating Containers
Virtuozzo provides two means of keeping your containers up to date:

147

Chapter 7. Keeping Your System Up To Date

• Updating EZ templates software packages inside a particular container by means of the vzpkg utility.

Using this facility, you can keep any of the containers existing on your hardware node up to date.

• Updating caches of the OS EZ templates installed on the hardware node. This facility allows you to

create new containers already having the latest software packages installed.

7.4.1 Updating EZ Template Packages in Containers

Virtuozzo allows you to update packages of the OS EZ template a container is based on and of any

application EZ templates applied to the container. You can do it by using the vzpkg update utility. Assuming

that the container MyCT is based on the centos-6-x86_64 OS EZ template, you can issue the following

command to update all packages included in this template:

vzpkg update 26bc47f6-353f-444b-bc35-b634a88dbbcc centos-6-x86_64
...

Updating: httpd ### [1/4]
Updating: vzdev ### [2/4]
Cleanup : vzdev ### [3/4]
Cleanup : httpd ### [4/4]

Updated: httpd.i386 0:2.0.54-10.2 vzdev.noarch 0:1.0-4.swsoft
Complete!
Updated:
httpd i386 0:2.0.54-10.2
vzdev noarch 0:1.0-4.swsoft

....

Note:

1. Updating EZ templates is supported for running containers only.

2. If you are going to update the cache of a commercial OS EZ template (e.g., Red Hat Enterprise

Server 5 or SLES 10), you should first update software packages in the remote repository used to

handle this OS EZ template and then proceed with updating the EZ template cache.

As you can see from the example above, the httpd and vzdev applications have been updated for the

centos-6-x86_64 OS EZ template. If you wish to update all EZ templates (including the OS EZ template) inside

the container MyCT at once, execute this command:

vzpkg update 26bc47f6-353f-444b-bc35-b634a88dbbcc
...
Running Transaction

Updating : hwdata #### [1/2]
Cleanup : hwdata #### [2/2]

Updated: hwdata.noarch 0:1.0-3.swsoft

148

7.4. Updating Containers

Complete!
Updated:
hwdata noarch 0:0.158.1-1

In the example above, only the hwdata package inside the container MyCT was out of date and updated to the

latest version.

7.4.2 Updating OS EZ Template Caches

With the release of new updates for the corresponding Linux distribution, the created OS EZ template cache

can become obsolete. Virtuozzo allows you to quickly update your OS EZ template caches using the vzpkg

update cache command.

....

Note: If you are going to update the cache of a commercial OS EZ template (e.g., Red Hat Enterprise

Server 6 or SLES 11), you should first update software packages in the remote repository used to handle

this OS EZ template and then proceed with updating the EZ template cache.

When executed, vzpkg update cache checks the cache directory in the template area (/vz/template/cache by

default) on the hardware node and updates all existing tarballs in this directory. However, you can explicitly

indicate the tarball for what OS EZ template should be updated by specifying the OS EZ template name. For

example, to update the tarball for the centos-6-x86_64 OS EZ template, run this command:

vzpkg update cache centos-6-x86_64
Loading "rpm2vzrpm" plugin
Setting up Update Process
Setting up repositories
base0 100% |=========================| 951 B 00:00
base1 100% |=========================| 951 B 00:00
base2 100% |=========================| 951 B 00:00
base3 100% |=========================| 951 B 00:00
...

Upon the vzpkg update cache execution, the old tarball name gets the -old suffix (e.g.,

centos-x86.tar.gz-old).

You can also pass the -f option to vzpkg update cache to remove an existing tar archive and create a new one

instead of it.

If the vzpkg update cache command does not find a tarball for one or several OS EZ templates installed on

the server, it creates tar archives of the corresponding OS EZ templates and puts them to the

/vz/template/cache directory.

149

CHAPTER 8

Managing High Availability
Clusters

This chapter explains managing high availability (HA) for servers that participate in Virtuozzo Storage clusters.

High availability keeps virtual machines, containers, and iSCSI targets operational even if the node they are

located on fails. In such cases, the affected virtual environments continue working on other, healthy nodes in

the cluster. High availability is ensured by:

• Metadata redundancy. For a Virtuozzo Storage cluster to function, not all but just the majority of MDS

servers must be up. By setting up multiple MDS servers in the cluster you will make sure that if an MDS

server fails, other MDS servers will continue controlling the cluster.

• Data redundancy. Copies of each piece of data are stored across different storage nodes to ensure that

the data is available even if some of the storage nodes are inaccessible.

....

Note: The redundancy is achieved by one of two methods: replication or erasure coding (for

details, see Understanding Data Redundancy).

• Monitoring of node health.

You may need to follow different instructions in this chapter based on your scenario which can be one of

these:

• You use Virtuozzo Storage with CLI management, you have not enabled HA for virtual machines and

containers by means of the client server role during installation, and you want to enable it.

In this case, continue reading this chapter.

150

https://docs.virtuozzo.com/virtuozzo_7_installation_guide/preparing-for-installation/planning-storage-gui.html#understanding-data-redundancy
https://docs.virtuozzo.com/virtuozzo_7_installation_guide/installing-virtuozzo/installing-virtuozzo-with-cli.html#virtuozzo-storage-server-roles

8.1. Prerequisites for High Availability

• You use Virtuozzo Storage with CLI management, you have enabled HA for virtual machines and

containers by means of the client server role during installation, and you want to change the default

resource relocation mode.

In this case, HA in the DRS mode is automatically enabled for virtual machines and containers on the

node. To change the resource relocation mode, e.g., to round-robin, follow the instructions in

Configuring Resource Relocation Modes on page 154.

• You use Virtuozzo Storage with GUI management, you have not assigned iSCSI network roles or created

S3 clusters yet in the Virtuozzo Storage management panel, and you want to configure HA manually

(e.g., to manually choose a resource relocation mode).

In this case, continue reading this chapter.

• You use Virtuozzo Storage with GUI management, you have assigned the network role “ISCSI” to a

node’s network interface or joined a node to an S3 cluster in the Virtuozzo Storage management panel,

and you want to change the default resource relocation mode.

In this case, HA in the round-robin mode is automatically enabled for virtual machines and containers

on the node. To change the resource relocation mode, e.g., to DRS, follow the instructions in Configuring

Resource Relocation Modes on Nodes Participating in S3 or iSCSI Export on page 156.

8.1 Prerequisites for High Availability
For the high availability feature to work, the following prerequisites must be met:

• A Virtuozzo Storage cluster must be set up in your network. High availability is supported only for nodes

joined to Virtuozzo Storage clusters.

• The Virtuozzo Storage cluster must have 5 or more nodes.

• Virtual machines and containers residing on a node must be stored in the cluster:

• If you use Virtuozzo Storage with GUI management, log in to the management panel, create

datastores, and place your virtual machines and containers in them as described in the Virtuozzo

Storage Administrator’s Guide.

• If you use Virtuozzo Storage with CLI management, virtual machines and containers are

automatically configured to be stored in the cluster on nodes for which the Client Server Role was

chosen during installation. You can also configure them manually.

151

https://docs.virtuozzo.com/virtuozzo_7_installation_guide/installing-virtuozzo/installing-virtuozzo-with-cli.html#virtuozzo-storage-server-roles
http://docs.virtuozzo.com/virtuozzo_7_installation_guide/preparing-for-installation/planning-storage-gui.html#network-interface-roles
http://docs.virtuozzo.com/virtuozzo_storage_administrators_guide/exporting-virtuozzo-storage-cluster-dat/exporting-data-via-s3.html#creating-the-s3-cluster
http://docs.virtuozzo.com/virtuozzo_storage_administrators_guide/exporting-virtuozzo-storage-cluster-dat/exporting-data-via-s3.html#creating-the-s3-cluster
http://docs.virtuozzo.com/virtuozzo_7_installation_guide/preparing-for-installation/planning-storage-gui.html#network-interface-roles
http://docs.virtuozzo.com/virtuozzo_storage_administrators_guide/exporting-virtuozzo-storage-cluster-dat/exporting-data-via-s3.html#creating-the-s3-cluster
https://docs.virtuozzo.com/virtuozzo_storage_administrators_guide/exporting-virtuozzo-storage-cluster-dat/managing-datastores.html
https://docs.virtuozzo.com/virtuozzo_storage_administrators_guide/exporting-virtuozzo-storage-cluster-dat/managing-datastores.html
https://docs.virtuozzo.com/virtuozzo_storage_administrators_command_line_guide/setting-up-a-virtuozzo-storage-cluster/setting-up-clients.html#stage-3-configuring-virtual-machines-and-containers

Chapter 8. Managing High Availability Clusters

• The chosen redundancy mode must protect your data against a simultaneous failure of two or more

nodes. To see the list of redundancy modes and their differencies, refer to Understanding Data

Redundancy.

• If you use Virtuozzo Storage with GUI management, you select the redundancy mode while

creating datastores.

• If you use Virtuozzo Storage with CLI management, you need to change the default redundancy

parameters for the directories storing your virtual machines and containers.

For example, to set the 3:2 replicas mode for the vmprivate and private directories (with VMs and

containers, respectively) in the cluster stor1, run the following commands:

vstorage set-attr -R /vstorage/stor1/vmprivate replicas=3
vstorage set-attr -R /vstorage/stor1/private replicas=3

....

Note: It is not recommended to use the erasure coding redundancy mode for Virtuozzo

virtual machines and containers.

• (Virtuozzo 7.0.6 and newer) Each node in the cluster must have the SERVER_UUID parameter set in the

/etc/vz/vz.conf file. Virtuozzo Storage requires it to provide access to container disks. For the

parameter description, see the Virtuozzo 7 Command Line Reference.

8.2 Enabling and Disabling High Availability on
Nodes
To enable high availability on a node means to enable it for all virtual machines and containers on this node

that are stored in the Virtuozzo Storage cluster.

152

https://docs.virtuozzo.com/virtuozzo_7_installation_guide/preparing-for-installation/planning-storage-gui.html#understanding-data-redundancy
https://docs.virtuozzo.com/virtuozzo_7_installation_guide/preparing-for-installation/planning-storage-gui.html#understanding-data-redundancy
https://docs.virtuozzo.com/virtuozzo_7_command_line_reference/managing-virtuozzo/virtuozzo-configuration-files.html#global-virtuozzo-configuration-file

8.2. Enabling and Disabling High Availability on Nodes

....

Note:

1. When you assign the network role “ISCSI” to a node’s network interface or join a node to an S3

cluster in the Virtuozzo Storage management panel, high availability is automatically enabled for

virtual machines and containers on this node in the round-robin mode.

2. When you enable HA for virtual machines and containers for the client server role during

installation of Virtuozzo Storage with CLI management, high availability is automatically enabled for

virtual machines and containers on this node in the DRS mode.

To enable high availability on a node, do the following:

1. Update Virtuozzo Storage to the latest version with yum update.

2. Run the hastart script:

hastart -c <cluster> -n <storage_network/network_mask>

where <cluster> is the cluster name, e.g., vstor1, <storage_network> is the cluster internal network, and

<network_mask> covers all the nodes in the cluster.

The script will automatically install, configure, and start the HA services on the node as well as add the

node to the HA configuration.

After enabling HA for the node, you can check the result with the shaman stat command.

8.2.1 Disabling High Availability for Specific Virtual Machines and

Containers

By default, if high availability is enabled on a node, it affects all virtual machines and containers on said node.

If necessary, you can disable HA for specific virtual machines and containers using the prlctl set command.

For example:

prlctl set MyVM --ha-enable no

To re-enable HA support, run:

prlctl set MyVM --ha-enable yes

153

http://docs.virtuozzo.com/virtuozzo_7_installation_guide/preparing-for-installation/planning-storage-gui.html#network-interface-roles
http://docs.virtuozzo.com/virtuozzo_storage_administrators_guide/exporting-virtuozzo-storage-cluster-dat/exporting-data-via-s3.html#creating-the-s3-cluster
http://docs.virtuozzo.com/virtuozzo_storage_administrators_guide/exporting-virtuozzo-storage-cluster-dat/exporting-data-via-s3.html#creating-the-s3-cluster
https://docs.virtuozzo.com/virtuozzo_7_installation_guide/installing-virtuozzo/installing-virtuozzo-with-cli.html#virtuozzo-storage-server-roles

Chapter 8. Managing High Availability Clusters

8.2.2 Enabling High Availability for iSCSI Targets

....

Note: If you use Virtuozzo Storage with GUI management, enable HA for iSCSI targets by assigning the

network role “ISCSI” to a node’s network interface. Keep in mind that doing so also enables HA for virtual

machines and containers on this node that are stored in the Virtuozzo Storage cluster.

If you use Virtuozzo Storage with CLI management, high availability for iSCSI targets is disabled by default. To

enable it on a cluster node, do the following:

1. If not yet done, enable HA on the node using the hastart script as described in the previous section.

2. Add the iSCSI shaman role to the node. For example, on a node in the cluster vstor1, run:

shaman -c vstor1 add-role ISCSI

If you want HA to work only for iSCSI targets, change the shaman roles on the node by running the following

command:

shaman -c vstor1 set-roles ISCSI

8.2.3 Disabling High Availability on Nodes

Disabling HA on a node disables it for all virtual environments and iSCSI targets on this node that are stored

in the Virtuozzo Storage cluster.

To disable HA on a node, do the following:

1. Disable and stop HA services:

systemctl disable shaman.service
systemctl stop shaman.service
systemctl disable pdrs.service
systemctl stop pdrs.service

2. Remove the node from the HA configuration. For example, for a node in the cluster vstor1, run:

shaman -c vstor1 leave

8.3 Configuring Resource Relocation Modes
You can configure how the cluster will deal with situations when a node fails. Three modes are available:

154

http://docs.virtuozzo.com/virtuozzo_7_installation_guide/preparing-for-installation/planning-storage-gui.html#network-interface-roles

8.3. Configuring Resource Relocation Modes

• DRS (default). In this mode, virtual machines and containers which were running on a failed node are

relocated to healthy nodes based on available RAM and license capacity. This mode can be used for

nodes on which the pdrs service is running.

....

Note: If CPU pools are used, virtual machines and containers can only be relocated to other

nodes in the same CPU pool. For details, see Managing CPU Pools on page 158.

The DRS mode works as follows. The master DRS continuously collects the following data from each

healthy node in the cluster via SNMP:

• total node RAM,

• total RAM used by virtual machines,

• total RAM used by containers,

• maximum running virtual machines allowed,

• maximum running containers allowed,

• maximum running virtual machines and containers allowed.

If a node fails, the shaman service sends a list of virtual machines and containers which were running on

that node to the master DRS that sorts it by most required RAM. Using the collected data on node RAM

and licenses, the master DRS then attempts to find a node with the most available RAM and a suitable

license for the virtual environment on top of the list (requiring the most RAM). If such a node exists, the

master DRS marks the virtual environment for relocation to that node. Otherwise, it marks the virtual

environment as broken. Then the master DRS processes the next virtual environment down the list,

adjusting the collected node data by the requirements of the previous virtual environment. Having

processed all virtual environments on the list, the master DRS sends the list to the shaman service for

actual relocation.

• Spare. In this mode, virtual machines and containers from a failed node are relocated to a spare

node—an empty node with enough resources and a license to host all virtual environments from any

given node in the cluster. Such a node is required for high availability to work in this mode.

Before switching to this mode, make sure the spare node is added to the HA configuration and has no

resources (virtual machines, containers, iSCSI targets, and S3 clusters) stored on it. To check this, run

the shaman stat command on any node in the cluster and check that RESOURCES column shows zeroes

for the node:

155

Chapter 8. Managing High Availability Clusters

shaman stat
Cluster 'stor1'
Nodes: 3
Resources: 12

NODE_IP STATUS ROLES RESOURCES
* 10.10.20.1 Active VM:QEMU,CT:VZ7,ISCSI,S3 0 CT, 0 S3, 0 VM, 0 ISCSI
M 10.10.20.2 Active VM:QEMU,CT:VZ7,ISCSI,S3 4 CT, 1 S3, 3 VM, 0 ISCSI
10.10.20.3 Active VM:QEMU,CT:VZ7,S3 1 CT, 1 S3, 1 VM, 1 ISCSI

In the example above, the current node (marked by the asterisk) is empty and can be used as spare.

If the node is not empty, you can free it:

• from VMs and containers by migrating them to the other cluster nodes,

• from iSCSI targets by unregistering them on said node and registering them on the other cluster

nodes,

• from S3 resources by releasing said node from the S3 cluster.

Once you have a spare node in your cluster, you can switch to the spare mode by running:

shaman set-config RESOURCE_RELOCATION_MODE=spare

• Round-robin (default fallback). In this mode, virtual machines, containers, and iSCSI targets from a

failed node are relocated to healthy nodes in the round-robin manner. To switch to this mode, run:

shaman set-config RESOURCE_RELOCATION_MODE=round-robin

Additionally, you can set a fallback relocation mode in case the chosen relocation mode fails. For example:

shaman set-config RESOURCE_RELOCATION_MODE=drs,spare

8.4 Configuring Resource Relocation Modes
on Nodes Participating in S3 or iSCSI Export

....

Important: Follow instructions in this section only if you use Virtuozzo Storage with GUI management

in the scenario described below. Otherwise skip this section.

• If you use Virtuozzo Storage with GUI management and have assigned the network role “ISCSI” to a

node’s network interface in the Virtuozzo Storage management panel, high availability is automatically

156

http://docs.virtuozzo.com/virtuozzo_7_installation_guide/preparing-for-installation/planning-storage-gui.html#network-interface-roles

8.5. Configuring HA Priority for Virtual Machines and Containers

enabled for virtual machines, containers, and iSCSI targets on this node in the round-robin resource

relocation mode.

• If you use Virtuozzo Storage with GUI management and have joined a node to an S3 cluster in the

Virtuozzo Storage management panel, high availability is automatically enabled for virtual machines,

containers, and S3 resourses on this node in the round-robin resource relocation mode.

....

Note: All resource relocation modes are described in Configuring Resource Relocation Modes on

page 154.

If you are fine with the round-robin mode, you do not need to configure anything else on the node. If,

however, you want to change the resource relocation mode, e.g., to DRS, log in to the node via SSH, and run

the hastart script as described in Enabling and Disabling High Availability on Nodes on page 152.

After executing the script, the HA mode will automatically change to DRS. If you need to change it again,

follow the instructions in Configuring Resource Relocation Modes on page 154.

8.5 Configuring HA Priority for Virtual
Machines and Containers
High availability priority defines which virtual machines and containers will be relocated first if the node they

are located on fails. The higher is priority, the higher is the chance a virtual machine or container has to be

relocated to a healthy node, if the Virtuozzo Storage cluster does not have enough disk resources.

By default, all newly created virtual machines and containers have the priority set to 0. You can use the

prlctl set command to configure the default priority of a virtual machine or container, for example:

prlctl set MyVM1 --ha-prio 1
prlctl set MyVM2 --ha-prio 2

These commands set the HA priority for the MyVM1 and MyVM2 virtual machines to 1 and 2, respectively. If the

node where these VMs are located fails, MyVM2 will be the first to relocate to a healthy node, followed by MyVM1

and then by all other virtual machines that have the default priority of 0.

157

http://docs.virtuozzo.com/virtuozzo_storage_administrators_guide/exporting-virtuozzo-storage-cluster-dat/exporting-data-via-s3.html#creating-the-s3-cluster

Chapter 8. Managing High Availability Clusters

8.6 Managing CPU Pools

....

Warning: This feature is experimental. Libvirt may not be aware of new CPU features that may

already be used in CPU pools. This may lead to issues with migration to destination nodes that do not

have these unreported CPU features.

In Virtuozzo, you can avoid stopping virtual environments on a node (e.g., for node maintenance) by

temporarily migrating them live to another node. For live migration to be possible, the CPUs on the source

and destination nodes must be manufactured by the same vendor, and the CPU features of the destination

node must be the same or exceed those of the source node.

Two issues may arise from this requirement. First, if the target node has more CPU features than the source

node, live migration back to the source server will not be possible. Second, if a node in a high-availability

cluster fails and its virtual environments are relocated to another node, that destination node may have a

CPU from a different vendor or with a different set of features that will prevent live migration back to the

original node when it goes up again.

CPU pools solve these two issues by dividing your Virtuozzo nodes into groups (pools) in which live migration

between any two nodes is always guaranteed. This is achieved by determining CPU features common for all

nodes in a pool and masking (disabling) the rest of the CPU features on nodes that have more of them. So a

CPU pool is a group of nodes with equal CPU features.

....

Note: Adding nodes with same CPUs to different CPU pools does not prevent live migration between

such nodes.

8.6.1 Adding Nodes to CPU Pools

....
Note: Nodes with CPUs from different vendors cannot be added to same CPU pools.

A node that is to be added to a CPU pool must not have running virtual machines and containers on it. To

meet this requirement while avoiding virtual environment downtime, you can migrate all running virtual

machines and containers live to a different node (and migrate them back live after the node has been added

to a pool).

158

8.6. Managing CPU Pools

The easiest way to add a node to a CPU pool is to run the following command on it:

cpupools join

The node will be added to a default CPU pool.

Default pools have the following features and limitations:

• The naming pattern is default_{intel}N, e.g., default_intel0, default_intel1, etc.

• A preset, unchangeable basic CPU mask provides maximum hardware compatibility at the expense of

advanced CPU features. Different CPU feature masks are used for different CPU vendors.

• Nodes which do not support the basic CPU feature mask are placed in different default CPU pools, e.g.,

default_intel1, default_intel2, etc.

• Nodes cannot be added to specific default CPU pools on purpose.

To make sure that as many common CPU features as possible are enabled for nodes in a pool for best

performance, you can move the required nodes to a custom CPU pool. To do this:

1. On the node to be added to a custom CPU pool, run the cpupools move command. For example:

cpupools move mypool

The node will be moved to the CPU pool mypool. If the CPU pool does not exist, it will be created.

....
Note: Custom CPU pools are created with the same basic CPU feature mask as default pools.

2. On any node in the new pool, run the cpupools recalc command to update the CPU feature mask and

make sure that as many common CPU features as possible are enabled. For example:

cpupools recalc mypool

Now that node is in the desired CPU pool, you can migrate the node’s virtual machines and containers back

live.

The general recommendation is to group nodes with CPUs of the similar microarchitecture, generation, or

family as they have similar features. This way most of the CPU features will remain available for nodes after

applying the CPU feature mask to the pool. This approach will help ensure the best possible performance for

nodes and at the same time guarantee live migration compatibility.

159

Chapter 8. Managing High Availability Clusters

8.6.2 Monitoring CPU Pools

To see which CPU pools exist in your cluster and which nodes are in them, run the cpupools stat command

on any node in the cluster. For example:

cpupools stat
default_intel0:
320117e17894401a
bec9df1651b041d8
eaea4fc0ddb24597
mypool:
ca35929579a448db
* f9f2832d4e5f4996

The identifiers listed are Virtuozzo Storage node IDs which you can obtain with the shaman -v stat command.

For example:

shaman -v stat
Cluster 'vstor1'
Nodes: 5
Resources: 1

NODE_IP STATUS NODE_ID RESOURCES
10.29.26.130 Active bec9df1651b041d8 0 CT

* 10.29.26.134 Active f9f2832d4e5f4996 0 CT
10.29.26.137 Active ca35929579a448db 0 CT
10.29.26.141 Active 320117e17894401a 0 CT

M 10.29.26.68 Active eaea4fc0ddb24597 1 CT
...

....
Note: The asterisk marks the current node (on which the command has been run).

8.6.3 Removing Nodes from CPU Pools

To remove the current node from a CPU pool, run the cpupools leave command on it:

cpupools leave

8.7 Monitoring Cluster Status
You can use the shaman top and shaman stat commands to monitor the overall status of a cluster and cluster

resources. The shaman stat command shows a snapshot of the current cluster status and clustering

160

8.7. Monitoring Cluster Status

resources while shaman top displays a dynamic real-time view of the cluster. The following shows an example

output of the shaman stat command:

shaman stat
Cluster 'vstor1'
Nodes: 3
Resources: 8

NODE_IP STATUS RESOURCES
M 10.30.24.176 Active 0 CT, 0 VM, 1 ISCSI
* 10.30.25.33 Active 1 CT, 3 VM, 1 ISCSI

10.30.26.26 Active 0 CT, 0 VM, 2 ISCSI

CT ID STATE STATUS OWNER_IP PRIORITY
101 stopped Active 10.30.25.33 0

VM NAME STATE STATUS OWNER_IP PRIORITY
vm1 stopped Active 10.30.25.33 0
vm2 running Active 10.30.25.33 0
vm3 stopped Active 10.30.25.33 0

ISCSI ID STATE STATUS OWNER_IP PRIORITY
iqn.2014-04.com.pstorage:ps1 running Active 10.30.24.176 0
iqn.2014-04.com.pstorage:ps2 running Active 10.30.25.33 0
iqn.2014-04.com.pstorage:ps3 running Active 10.30.26.26 0

The table below explains all output fields:

Field Description

Cluster Name of the cluster.

The “M” next to the server denotes that the server is the main server in the

cluster (called the master server), and the asterisk (*) indicates the server

where the shaman stat command was executed.

Nodes Number of servers with enabled HA support in the cluster.

Resources Number of resources shaman keeps control of.

NODE_IP IP address assigned to the server.

STATUS Server status. It can be one of the following:

• Active. The server is up and running and controlled by shaman.

• Inactive. The server is up and running, but shaman does not control the

server (e.g., the shamand service is stopped).

RESOURCES Resources hosted on the server.

CT ID Container ID.

VM NAME Virtual machine name.

161

Chapter 8. Managing High Availability Clusters

Field Description

ISCSI ID iSCSI target name.

STATE Denotes whether the virtual machine/container is running or stopped.

STATUS HA status of the virtual machine, container, or iSCSI target (as reported by

shaman). It can be one of the following:

• Active. Healthy virtual machines, containers, or iSCSI targets hosted in

the cluster.

• Broken. Virtual machines, containers, or iSCSI targets that could not be

relocated from a failed server to a healthy one.

• Pool. Virtual machines, containers, or iSCSI targets waiting for relocation

from a failed server to a healthy one.

OWNER_IP IP address of the server where the virtual machine, container, or iSCSI target

is hosted.

PRIORITY Current priority of the virtual machine/container. For details, see Configuring

HA Priority for Virtual Machines and Containers on page 157.

The output of the shaman top command is similar to that of shaman stat. Additionally, you can use keyboard

keys to change the command output on the fly. The following keys are supported:

• g: Group or ungroup resources by their status.

• v: Show or hide additional information.

• ENTER or SPACE: Update the screen.

• q or Esc or CTRL-C: Quit.

• h: Show the help screen.

8.8 Managing Cluster Resources with Scripts
Virtuozzo Storage comes with a number of scripts used by the shaman utility to manage and monitor cluster

resources. There are two types of scripts:

• Common scripts. The common scripts are located in the /usr/share/shaman directory and used by the

shaman utility to call resource-specific scripts.

162

8.8. Managing Cluster Resources with Scripts

• Resource-specific scripts. For each common script, there are one or more resource-specific scripts.

Resource-specific scripts are peculiar to each cluster resource and located in separate subdirectories.

For virtual machines and containers, these directories are /usr/share/shaman/vm- and

/usr/share/shaman/ct-, respectively. Resource-specific scripts are used to perform various actions on

cluster resources.

The following example describes the process of using the relocate script:

1. The shaman-monitor daemon checks at regular intervals whether some virtual machines and containers

require relocation (usually, when a server fails and the virtual machines and containers hosted on it

should be relocated to a healthy server).

2. If some virtual machines or containers are scheduled for relocation, shaman-monitor calls the common

script /usr/share/shaman/relocate.

3. The common script relocate calls the scripts /usr/share/shaman/vm-/relocate and

/usr/share/shaman/ct-/relocate to relocate the virtual machines and containers to a healthy server.

If necessary, you can customize any of the scripts to meet your demands.

For the full list of scripts and their descriptions, see the shaman-scriptsman page.

163

CHAPTER 9

Hardening Your Virtuozzo
Server

Similar to other hypervisor-based technologies, the health of a Virtuozzo server is critical to ensure the

uptime of all resident virtual environments.

This chapter provides information on best practices necessary to harden a Virtuozzo server and ensure its

continuous uptime.

9.1 Update Policy
Keeping Virtuozzo up to date is critical for the security and reliability of the system. To mitigate any potential

security risks, Virtuozzo software must be updated in a timely manner.

Software packages that have not been updated for a significant period of time can result in security

vulnerabilities and other serious functionality issues compromising the entire system.

For more details, see Keeping Your System Up To Date on page 139.

9.2 Audit Policy
The audit policy defines the significant events which need to be logged on server. Logs have two important

roles: provide a means for near-real-time monitoring of the system and allow you to investigate past actions.

When considering system security, audit events will often identify unauthorized attempts to access

164

9.3. Mount Policy

resources. The events originate from interactive user sessions or system processes and services.

As defined by the Filesystem Hierarchy Standard (FHS), events are logged to files which reside in the /var/log

directory. Files that you need to pay attention to are listed in the table:

File Description How to examine

/var/log/lastlog Records of each user’s last login lastlog

/var/log/messages System messages from syslogd cat /var/log/messages

/var/log/wtmp Records of all logins and logouts who /var/log/wtmp

9.2.1 Storing Logs Remotely

It is recommended to store logs remotely. This will let you detect intrusion even if an attacker gained root

privileges and modified local logs to hide their presence. You can change log location by configuring the

rsyslogd daemon.

For example, you can add the following lines to the end of the /etc/rsyslog.conf configuration file:

kern.warning;*.err;authpriv.none\t@<remote_host>
*.info;mail.none;authpriv.none;cron.none\t@<remote_host>
*.emerg\t@<remote_host>
local7.*\t@<remote_host>

where <remote_host> is the FQDN of the destination server where logs need to be stored.

9.2.2 Viewing Critical Audit Messages

The most important security messages are tracked by syslog authpriv and stored in the /var/log/secure log

file by default. It tracks all attempts to access the computer from a local interactive logon, network logon,

network servce startups, change of privileges, etc. Failed logon attempts may show a trend for password

attacks. Successful logon messages are important for identifying which user logged on at a given time.

9.3 Mount Policy
The mount policy can be defined by mount options that can help you prevent unexpected usage of files.

These options are listed in the table:

165

Chapter 9. Hardening Your Virtuozzo Server

Option Description

noexec Do not allow direct execution of any binaries on the mounted file system.

nodev Do not interpret character or block special devices on the file system.

nosuid Do not allow set-user-identifier or set-group-identifier bits to take effect.

nouser Forbids an ordinary (i.e., non-root) user to mount the file system.

You can add these mount options to corresponding partitions in /etc/fstab. For example, the noexec option

can be applied to the /tmp partition, while all of the above options can be applied to removable media

mounts (CDROMs, DVDROMs, floppy drives, USB memory cards, etc.).

9.4 Service Policy
To be able to log in to your Virtuozzo server for administration purposes, make sure that services listed in the

table are enabled on the server.

Service Description

network Provides network connectivity for the Virtuozzo server itself and virtual

environments residing on it.

sshd Most of the Virtuozzo servers reside in datacenters and are managed remotely.

crond Virtuozzo uses a number of cron-based tools for periodical checking and

reporting of system health parameters.

rsyslogd System events logging.

prl-disp-service Virtuozzo management service.

libvirtd Performs management tasks on virtual environments.

The following best practices apply:

sshd:

• Configure your SSH daemon to use protocol version 2.

• Prohibit remote root login as most attacks are performed to this account. Login as a non-privileged

user and switch to the root credentials using sudo package if required.

• Prohibit authentication based on hosts and rhosts as they are known to be vulnerable.

rsyslogd:

166

9.5. Account Policy

• Do not use remote logging over UDP protocol.

• Use TCP transport and SSH tunnel for remote logging, if packets pass through an untrusted network.

prl-disp-service:

• Block the remote access to prl-disp-service if you do not use virtual environment migration, remote

backup/restoration, or remote access to Virtuozzo servers via prlctl or Virtuozzo SDK.

Additionally, it is recommended to have only hardware-related services running on your Virtuozzo server. For

example, you can run smartd or snmpd on the server, but make sure to isolate services like web or mail servers

inside virtual environments in case they are attacked.

9.5 Account Policy
It is recommended to minimize the number of accounts in the host OS to make it more secure.

The general recommendations for all Linux distributions are:

• create a non-privileged account for performing non-privileged tasks in the system;

• use sudo for performing privileged tasks;

• disable remote root logon, use a non-privileged user for this;

• disable system user logon;

• force periodical password changes;

• disable accounts after a number of login failures.

9.6 Networking Policy
A Virtuozzo server should be isolated from the Internet. It should only have an internal IP address and

firewall policies applied to it. To still be able to update the license and install updates from Virtuozzo

repositories, you can set up a proxy server and follow the instructions in Setting Up Proxy Server for License

Activation on page 133.

Virtuozzo enables Linux kernel firewall during installation. To see the list of ports opened by default, refer to

the Virtuozzo 7 Installation Guide.

167

http://docs.virtuozzo.com/virtuozzo_7_installation_guide/installing-virtuozzo/configuring-server-ports-for-virtuozzo.html

CHAPTER 10

Advanced Tasks

This chapter collects miscellaneous configuration and management tasks, some of which require a deeper

knowledge of Linux and Virtuozzo and should be performed with caution.

10.1 Configuring Automatic Memory
Management Policies
Virtuozzo offers several techniques for automatically managing VM and container memory. The

management is performed by the vcmmd daemon by means of policies described below. Setting the correct

policy may provide performance and density benefits to your Virtuozzo installation.

The following policies are currently available:

• performance (default). Best for hardware nodes with lots of small virtual environments (relative to a

NUMA node size).

....

Important: It is strongly recommended to avoid overcommitting resources when the

performance policy is enabled. For resource overcommit, switch to the density policy.

• density. Best for hardware nodes with memory overcommit.

• NoOpPolicy. This policy is set automatically if no license is installed on a hardware node or if the current

license is expired.

If you activated a license after installing Virtuozzo or updated an expired license, you need to restart the

vcmmd daemon to apply changes. To do this:

168

10.1. Configuring Automatic Memory Management Policies

1. Stop all virtual environments on the host or temporarily migrate them live to another host.

2. Run the following command:

systemctl restart vcmmd

3. Start the virtual environments or migrate them back to the server, depending on what you did in step 1.

After restarting vcmmd, the default performance policy will be applied.

You can switch between the policies with the prlsrvctl tool.

....

Note: Before setting a VCMMD policy, stop all virtual machines and containers on the host or

temporarily migrate them live to another host.

For example, to switch to the density policy, do the following:

1. Make sure that there are no running virtual machines or containers on the host:

prlctl list
UUID STATUS IP_ADDR T NAME

2. Set the policy with prlsrvctl set --vcmmd-policy:

prlsrvctl set --vcmmd-policy density

To check the currently enabled policy, run

prlsrvctl info | grep "policy"
Vcmmd policy: density config=density

10.1.1 Optimizing Virtual Machine Memory with Kernel Same-Page Merging

To optimize memory usage by virtual machines, Virtuozzo uses a feature of Linux called Kernel Same-Page

Merging (KSM). The KSM daemon ksmd periodically scans memory for pages with identical content and

merges those into a single page. Said page is marked as copy-on-write (COW), so when its contents are

changed by a virtual machine, the kernel creates a new copy for that virtual machine.

KSM enables the host to:

• avoid swapping due to merging of identical pages;

• run more virtual machines;

• overcommit virtual machine memory;

169

Chapter 10. Advanced Tasks

• speed up RAM and hence certain applications and guest operating systems.

In Virtuozzo 7, KSM is managed by vcmmd and work with both performance and density policies. However, with

performance policy enabled, KSM merges identical pages for each NUMA node independently which slows its

operation down by as many times as the number of NUMA nodes on the host (e.g., by four times if there are

four NUMA nodes).

....
Note: For more details, see Configuring Automatic Memory Management Policies on page 168.

10.1.2 Managing Host Services with VCMMD

In Virtuozzo 7, you can set memory limits and guarantees managed by vcmmd to host services. The daemon

will take into account the service memory while allocating resources to virtual environments.

....
Note: The setting is removed on hardware node reboot.

For example, to have a service named servicemanaged by vcmmd, do as follows:

1. Place the service processes in /sys/fs/cgroup/memory/service.slice directory.

2. Register service.slice in vcmmd and set the desired memory parameters. For example:

vcmmdctl register SRVC service.slice --guarantee 100000000 --limit 100000000 --swap 100000

3. Activate the service:

vcmmdctl activate service.slice

To check if the service is managed with vcmmd, run

vcmmdctl list
name type active guarantee limit swap
<...>
service.slice SRVC yes 97656 97656 97

You can change the service memory parameters at runtime using the vcmmdctl update command.

For example, to change the service.slice parameters, run:

vcmmdctl update service.slice --guarantee 200000000 --limit 200000000

To check if the parameters have been correctly applied, run

vcmmdctl list
name type active guarantee limit swap

170

10.1. Configuring Automatic Memory Management Policies

<...>
service.slice SRVC yes 195312 195312 max

You can unregister the service from vcmmd at runtime with the vcmmdctl unregister command.

10.1.3 Managing Virtuozzo Storage Services with VCMMD

For Virtuozzo Storage hardware nodes, vstorage.slice/vstorage-services.slice is automatically created in

the memory cgroup on hardware node start.

If you deployed Virtuozzo Storage on top of a Virtuozzo server and started the vstorage services manually

without rebooting the server, you need to restart the vcmmd daemon to apply changes. To do this:

1. Stop all virtual environments on the host or temporarily migrate them live to another host.

2. Run the following command:

systemctl restart vcmmd

3. Start the virtual environments or migrate them back to the server, depending on what you did in step 1.

After restarting vcmmd, vstorage.slice/vstorage-services.slice will be created in the memory cgroup.

To check if vstorage is managed with vcmmd, run

vcmmdctl list
name type active guarantee limit swap
<...>
vstorage.slice/vstorage-services.slice SRVC yes 4194304 103854973 0

You can temporarily change memory limits and guarantees for vstorage services at runtime using the

vcmmdctl update command. For example:

vcmmdctl update vstorage.slice/vstorage-services.slice --guarantee 100000000 --limit 100000000

The parameters will be reset to the default values on the next vcmmd restart or node reboot.

To configure limits and guarantees for vstorage services permanently, do as follows:

1. Edit the memory parameters in the /etc/vz/vstorage-limits.conf file. (Set -1 for unlimited memory.)

2. Restart vcmmd to apply changes:

systemctl restart vcmmd

171

Chapter 10. Advanced Tasks

10.2 Creating Customized Containers
If you wish to use custom applications in multiple identical containers, you can create containers with

necessary applications already preinstalled and tuned to meet your demands.

Virtuozzo offers several ways to create customized containers with preinstalled applications:

• From a golden image (an OS EZ template cache with preinstalled application templates).

• From a custom OS EZ template that specifies a custom application package list.

• From a custom configuration sample file that specifies custom application EZ templates.

10.2.1 Using Golden Image Functionality

The golden image functionality allows you to preinstall application templates to OS EZ template caches to

speed up creating multiple containers based on the same set of OS and application templates. Previously,

you could either install application templates to each container after creating it or embed them directly into a

custom OS template. Golden image is currently the easiest and fastest way to create containers with

preinstalled applications.

The best way to create such a cache is:

1. Make a custom sample configuration file with information on the OS EZ template to cache and

application EZ templates to preinstall. For example:

cp /etc/vz/conf/ve-basic.conf-sample \
/etc/vz/conf/ve-centos-6-x86_64-mysql-devel.conf-sample

....

Note: If you already have a custom sample configuration file with application EZ templates

specified in it, you can reuse it instead of creating a new one.

2. Add the OS EZ template and application EZ template information to the new configuration file. Each OS

and application template name must be preceded by a dot. Multiple consecutive application EZ

template names must be separated by white spaces. For example:

cd /etc/vz/conf
echo OSTEMPLATE=".centos-6-x86_64" >> ve-centos-6-x86_64-mysql-devel.conf-sample
echo TEMPLATES=".mysql .devel" >> ve-centos-6-x86_64-mysql-devel.conf-sample

3. Run the vzpkg create appcache command with your configuration file as an option. For example:

172

10.2. Creating Customized Containers

vzpkg create appcache --config centos-6-x86_64-mysql-devel

....

Note: If the resulting application cache already exists, it will not be recreated and you will see a

corresponding message. To recreate an application cache, use the vzpkg update appcache

command.

The resulting archive can be found in the /vz/template/cache directory on the hardware node. You can check

that it exists and includes necessary application templates with the following command:

vzpkg list appcache
centos-6-x86_64 2012-07-20 16:51:36

mysql
devel

10.2.1.1 Disabling Golden Image Functionality

The Golden Image functionality is enabled by default in the /etc/sysconfig/vz/vz.conf global configuration

file. Should you wish to disable it, do one of the following:

• Set the GOLDEN_IMAGE option to no in the Virtuozzo global configuration file. The Golden Image

functionality will be disabled globally.

• Set the GOLDEN_IMAGE option to no in the container sample configuration file. The Golden Image

functionality will be disabled for commands that use this specific sample configuration file.

• Create a file named golden_image containing no in the OS EZ template’s configuration directory. The

Golden Image functionality will be disabled for this specific OS EZ template.

• Create a file named golden_image containing no in the application template’s configuration directory.

The Golden Image functionality will be disabled for this specific application template, so it will not be

preinstalled into any OS EZ template caches.

10.2.2 Using Customized EZ Templates

You can create custom OS and application templates tailored to your needs. In such a template, you only

need to specify parameters that differ from those in the default template. All other parameters—that are not

explicitly set in the custom template—are inherited from the corresponding default template.

To create a custom template, do the following:

173

Chapter 10. Advanced Tasks

1. If required, install the default OS template on the hardware node. For example:

yum install centos-7-x86_64-ez

2. Create a directory for your template at the location where the default template directory is. For

example, for a custom CentOS 7 64-bit template mytmpl, create the directory

/vz/template/centos/7/x86_64/config/os/mytmpl.

3. If you are creating a custom OS template, specify repositories. For example, copy the file mirrorlist

from the default template directory to your template directory:

cp /vz/template/centos/7/x86_64/config/os/default/mirrorlist \
/vz/template/centos/7/x86_64/config/os/mytmpl

4. In your template directory, create the file packages listing the RPMs you need, one per line. For example,

systemd
yum

....

Note: The minimal list of packages to include in a custom template may vary depending on

guest OS. For example, CentOS 7 templates require that systemd be specified in the packages file for

the prlctl enter command to work on resulting containers.

5. Optionally, change more template parameters according to your needs (for a description of

parameters, see the next section).

Your custom template is ready. In this example, it is an OS template that contains systemd, yum, and all their

prerequisites. You now can create containers based on it. For example:

prlctl create MyCT --vmtype ct --ostemplate centos-7-x86_64-mytmpl

If you created an application template, you now can add it to the container configuration file as described in

Using Golden Image Functionality on page 172.

10.2.2.1 EZ Template Configuration Files

All EZ templates are stored in /vz/template, in subdirectories named according to OS name, version, and

architecture. For example, /vz/template/centos/7/x86_64. Each template includes a set of configuration files

stored in the /config/os/<template_name> subdirectory (OS templates) or the /config/app/<template_name>

subdirectory (application templates).

The following files can be in the template configuration subdirectory:

174

10.2. Creating Customized Containers

• ct2vm – Container to virtual machine migration script.

• description – Detailed information on the EZ template.

• distribution – OS templates only. The name of the Linux distribution for which the EZ template is

created.

• environment – OS templates only. A list of environment variables set in the form of <key>=<value>.

• mirrorlist – Links to files with lists of repositories from which the packages in the EZ template are to be

downloaded.

• osrelease – OS templates only. Contains native CentOS 7 distribution kernel version.

• package_manager – OS templates only. Specifies the packaging system used to handle the EZ template.

• packages – Contains a list of package names included in the corresponding EZ template.

• pre-cache, post-cache – OS templates only. Scripts that are executed before and after the packages in

the EZ template are installed on the hardware node.

• pre-install, post-install – Scripts that are executed inside the container before and after the package

management transaction.

• pre-install-hn, post-install-hn – Scripts that are executed on the hardware node before and after the

package management transaction.

• pre-upgrade, post-upgrade – OS templates only. Scripts that are executed before and after updating

packages inside the container.

• pre-remove, post-remove – Scripts that are executed before and after removing the application EZ

template or package from the container.

• release – Contains template release number.

• repositories – Contains a list of repositories where the packages in the EZ template are stored.

• summary – A brief summary of the EZ template.

• upgradable_versions – OS templates only.

• version – Contains template version number.

175

Chapter 10. Advanced Tasks

10.2.3 Creating Customized EZ Template RPMs

To share a custom EZ template between hardware nodes, you can create an RPM package with it as follows:

1. Download the default OS template source from

http://download.openvz.org/virtuozzo/releases/7.0/source/SRPMS.

2. Edit the template according to your needs, e.g., change OS template parameters, add, change or

remove application templates, and such.

3. Build the RPM from the .spec file in a clean environment using standard tools. Do not build more than

one template at once.

10.3 Setting Up Docker in Virtuozzo Containers
The current version of Virtuozzo supports Docker containers inside Virtuozzo system containers. You can

install Docker in a Virtuozzo container from a Virtuozzo’s Docker application template, from the official

Docker repository as described in the Docker installation guide, or from your favorite OS repository. If you

install Docker from the Docker or OS repository, make sure that your Docker version uses the overlayfs

storage driver (for more information on Docker storage drivers, see

https://docs.docker.com/engine/userguide/storagedriver/selectadriver/).

In the current version of Virtuozzo, you can run Docker in containers based on CentOS 7, Debian 8, Ubuntu

14.04 and 16.04, and Virtuozzo Linux 7. The Virtuozzo container will just need a network connection and

enough diskspace and RAM to run the Docker containers you need.

To set up Docker in a Virtuozzo container, do the following:

1. Create a Virtuozzo container based on one of the aforementioned guest operating systems. For

example:

prlctl create MyCT --vmtype ct --ostemplate centos-7-x86_64

2. Configure network in the Virtuozzo container:

prlctl set MyCT --netif_add eth0
prlctl set MyCT --ifname eth0 --dhcp yes --network Bridged

For more details, see Configuring Network Settings on page 21.

3. Start the Virtuozzo container. For example:

176

http://download.openvz.org/virtuozzo/releases/7.0/source/SRPMS
https://docs.docker.com/engine/installation/linux/rhel/
https://docs.docker.com/engine/userguide/storagedriver/selectadriver/

10.3. Setting Up Docker in Virtuozzo Containers

prlctl start MyCT

4. Install Docker in the Virtuozzo container:

prlctl exec MyCT yum install docker -y

5. Start the Docker daemon:

prlctl exec MyCT systemctl start docker.service

The Virtuozzo container is now ready to run Docker containers.

To check that Docker is installed properly, you can create and run test Docker containers in the Virtuozzo

Container. For example, MySQL and Wordpress:

1. If required, increase container RAM and disk space. For example:

prlctl set MyCT --memsize 4G --device-set hdd0 --size 50G

2. Launch MySQL:

prlctl exec MyCT docker run --name test-mysql -e MYSQL_ROOT_PASSWORD=123qwe -d mysql

3. Launch WordPress:

prlctl exec MyCT docker run --name test-wordpress --link test-mysql:mysql -p 8080:80 \
-d wordpress

4. Visit the IP address of the Virtuozzo container on port 8080. You should see a standard WordPress

installation screen.

10.3.1 Setting Up Docker for Running in Swarm Mode

Virtuozzo supports running Docker in swarm mode inside Virtuozzo containers. Swarm mode is enabled by

either creating a swarm or joining an existing swarm. A swarm is a cluster of Docker nodes.

To be able to run Docker in swarm mode, you need to set up Docker in a Virtuozzo container as follows:

1. Perform steps 1-4 from the instruction given in Setting Up Docker in Virtuozzo Containers on page 176.

2. Create the .dockerenv file in the container:

prlctl exec MyCT touch /.dockerenv

3. Load the ip_vs_ftpmodule on the server:

modprobe ip_vs_ftp

4. Start the Docker daemon:

177

Chapter 10. Advanced Tasks

prlctl exec MyCT systemctl start docker.service

Once Docker is set up in the Virtuozzo container, you can proceed to creating a swarm. To do this, refer to

Getting started with swarm mode.

10.3.2 Restrictions and Limitations for Docker in Virtuozzo Containers

1. Virtuozzo 7 does not support checkpointing and live migration of containers with Docker installed.

2. Virtuozzo 7 supports only overlayfs storage driver for Docker inside Virtuozzo containers.

3. Modules and third party add-ons that depend on operations prohibited in containers (loading of kernel

modules, mounting of block devices, direct access to physical hardware) may not work in containers.

Please contact Virtuozzo technical support in case of any issues with Docker-related solutions.

10.4 Managing Container Virtual Hard Disk
Encryption
Virtuozzo offers container virtual hard disk encryption capabilities based on dm-crypt and cryptsetup. The

current implementation uses the AES-256 encryption algorithm. The encryption mechanism is separated

from encryption key management, enabling you to use your own key management system (KMS) to issue

and manage encryption keys.

....
Important: Only the root user must have access to encryption operations on the host.

The overall encryption procedure may be described as follows. An end user requests encryption for their

container disk (create a new container with an encrypted disk, encrypt an existing disk, etc.). The KMS stores

a secret encryption key and a public encryption key ID assigned to the end user. The administrator (or an

automation tool) obtains the end user’s encryption key ID from the KMS and passes it to the corresponding

prlctl command. The prlctl command passes the key ID to the getkey executable that accesses the KMS

and returns the encryption key which is passed to cryptsetup. The cryptsetup tool issues a master key

unique for the container disk, encrypts the disk contents with the master key, then encrypts the master key

stored in container disk’s LUKS header with the encryption key passed from getkey.

The double encryption saves host resources in situations when the encryption key has to be changed (e.g.,

178

https://docs.docker.com/engine/swarm/swarm-tutorial/

10.4. Managing Container Virtual Hard Disk Encryption

for key rotation purposes). In such cases, only the master key in the LUKS header has to be re-encrypted

instead of the entire disk contents.

The only configuration step required to start using container disk encryption capabilities in Virtuozzo is to set

up the encryption key requester as described further to be able to obtain encryption keys by their IDs for

corresponding prlctl commands.

10.4.1 Setting Up Encryption Key Requester

The encryption mechanism communicates with the KMS as follows: executes the file

/usr/libexec/ploop/crypt.d/getkey with the only string parameter–encryption key ID–and reads the

returned encryption key value from the standard output. The getkey executable can be a script that calls the

KMS binary and passes the specified encryption key ID to it.

On success, the executable is expected to exit with zero code and the key value is expected to be printed to

the standard output in the binary form. On failure, the script is expected to exit with non-zero code.

....

Note: Key value may contain arbitrary bytes (e.g., \x00, \n, and such) that may be treated differently

by various scripting languages. For example, assigning the key value to a Bash variable would strip the

zero bytes from it, e.g., key_va\x00lue would become key_value.

To set up the encryption key requester on a Virtuozzo host, place the script to

/usr/libexec/ploop/crypt.d/getkey and make it executable and only accessible by the root user:

chown root:root /usr/libexec/ploop/crypt.d/getkey
chmod 700 /usr/libexec/ploop/crypt.d/getkey

10.4.2 Encrypting and Decrypting Container Virtual Hard Disks

Following is a list of encryption-related operations you can perform on container virtual hard disks. All

operations except decrypt require an encryption key ID obtained from your KMS.

....
Note: PFCache is disabled for encrypted disks.

1. Create a container with an encrypted root disk.

prlctl create <CT_name|CT_UUID> --vmtype ct --encryption-keyid <key_id>

179

Chapter 10. Advanced Tasks

2. Add a new encrypted disk to a container.

prlctl set <CT_name|CT_UUID> --device-add hdd --encryption-keyid <key_id>

3. Encrypt an unencrypted disk. During this operation, a new empty encrypted disk is created, the data is

moved to it from the unencrypted disk which is then securely erased with shred (unless --no-wipe is

added). For this operation, the host needs free disk space equal to the size of the container disk being

encrypted.

prlctl set <CT_name|CT_UUID> --device-set hdd0 --encrypt --encryption-keyid <key_id> \
[--no-wipe]

4. Change the encryption key ID of an encrypted disk with or without re-encrypting the entire disk

contents. By default, only the LUKS header of an encrypted disk is re-encrypted to save host resources.

The entire disk contents can be re-encrypted by adding --reencrypt to the command. During this

operation, a new empty encrypted disk is created, the data is moved to it from the old encrypted disk

which is then securely erased with shred (unless --no-wipe is added). For this operation, the host needs

free disk space equal to the size of the container disk being re-encrypted.

prlctl set <CT_name|CT_UUID> --device-set hdd0 --encryption-keyid <key_id> [--reencrypt] \
[--no-wipe]

5. Decrypt an encrypted container disk. During this operation, a new empty unencrypted disk is created

and the data is moved to it from the encrypted disk. If the operation completes successfully, the

encrypted disk is deleted. If the operation fails, the partially decrypted data is securely erased with

shred (unless --no-wipe is added) and the encrypted disk remains intact. For this operation, the host

needs free disk space equal to the size of the container disk being decrypted.

prlctl set <CT_name|CT_UUID> --device-set hdd0 --decrypt [--no-wipe]

10.4.3 Encrypting System Swap

Even if containers are encrypted, their memory may still be swapped to an unencrypted system swap

partition. On nodes intended to run encrypted containers, consider encrypting the swap partition as well.

To encrypt a swap partition with a random encryption key, do the following:

1. Identify swap partitions in the system:

swapon -s
Filename Type Size Used Priority
/dev/<partition> partition XXXXXXX 0 -1

2. Add a swap partition’s entry to the /etc/crypttab file. For example:

180

10.5. Connecting to Virtual Machines and Containers via VNC

swap /dev/<partition> /dev/urandom swap,noearly

Once the encryption is initiated, this will map the /dev/<partition> to /dev/mapper/swap as an encrypted

swap partition.

....

Note: To create an encryption key, you may use /dev/random instead of /dev/urandom. However,

in this case, the system may take a long time to boot.

3. Find out the UUID of the swap partition:

blkid /dev/<partition>
/dev/<partition>: UUID="XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" TYPE="swap"

4. Comment the swap partition’s entry in the /etc/fstab file and add an entry for the mapped

/dev/mapper/swap file. For example:

#UUID=<partition_UUID> swap swap defaults 0 0
/dev/mapper/swap none swap sw 0 0

5. Reboot to initiate the encryption.

6. Run the lsblk command to ensure the swap is encrypted. In the output, the swap partition’s TYPE

should be crypt.

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
...
�-<swap_partition> X:X 0 XG 0 crypt [SWAP]

...

The output of swapon -s will show a different filename:

swapon -s
Filename Type Size Used Priority
/dev/dm-X partition XXXXXXX 0 -1

10.5 Connecting to Virtual Machines and
Containers via VNC
You can use your favorite VNC clients to connect to and manage containers and virtual machines. To do this,

you need to complete these steps:

1. (Recommended) Secure VNC connections on the node with SSL.

181

Chapter 10. Advanced Tasks

2. Enable VNC access in the desired virtual machine or container.

3. Connect to the virtual machine or container with a VNC client.

The sections below describe these steps in details.

10.5.1 Securing VNC Connections with SSL

To set up SSL for all VNC connections on the node, do the following:

1. Acquire an SSL certificate and key from a trusted certificate authority.

2. Configure the VNC server to use the certificate and key:

prlsrvctl set --vnc-ssl-certificate <path_to_crt_file> --vnc-ssl-key <path_to_key_file>

To disable VNC encryption, specify empty arguments. For example:

prlsrvctl set --vnc-ssl-certificate '' --vnc-ssl-key ''

10.5.2 Enabling VNC Access to Virtual Machines

To enable VNC access to a virtual machine, you need to do the following:

1. Enable VNC support in the virtual machine.

2. Specify the TCP port number on the physical server that will be used to listen to VNC connections for

the virtual machine.

....

Note: A unique port number must be specified for each virtual machine where you plan to

connect via VNC.

3. Set a password to secure your VNC connection.

You can perform all these operations with a single command. For example:

prlctl set MyVM --vnc-mode manual --vnc-port 5901 --vnc-passwd XXXXXXXX

The changes will come into effect on the next virtual machine start.

182

10.6. Managing iptables Modules

10.5.3 Enabling VNC Access to Containers

To enable VNC access to a container, you need to do the following:

1. Make sure you have a valid user account in the container to be able to log into it.

2. Make sure the container is running.

3. Set the VNC mode and password for the container. For example:

prlctl set MyCT --vnc-mode manual --vnc-port 6501 --vnc-passwd XXXXXXXX

....

Note: Port number must be unique for each container you open VNC access to. In the auto

mode, correct port numbers are assigned automatically. In the manual mode, you need to make

sure port numbers are unique yourself.

10.5.4 Connecting with a VNC Client

After you have enabled VNC access to the virtual machine or container, you can connect to it with your

favorite VNC client. To do this, you need to pass the following parameters to the VNC client:

• IP address of the server where the virtual machine or container is hosted.

• Port number and password you specified when enabling VNC access.

• Valid user account in the virtual machine or container.

10.6 Managing iptables Modules
This section describes how to manage iptablesmodules for both physical servers and containers.

10.6.1 Using iptables Modules in Virtuozzo

Filtering network packets on hardware nodes running Virtuozzo does not differ from doing so on a typical

Linux server. You can use the standard iptables tool to control how network packets enter, move through,

and exit the network stack within the Virtuozzo kernel.

183

Chapter 10. Advanced Tasks

Connection tracking on the hardware node is disabled by default. Setting iptables rules that require

conntrack functionality enables tracking of new connections and makes the node vulnerable to DoS attacks,

since the number of conntrack slots is limited. However, setting such rules for particular virtual machines

and containers (e.g., for NAT) leaves other containers, virtual machines and the hardware node reachable in

case of a DoS attack.

....

Note: Once conntrack is enabled for a container, it cannot be disabled until the restart of the

hardware node or said container.

To detect active connections tracked on the hardware node, check if the /proc/net/nf_conntrack file contains

any entries:

cat /proc/net/nf_conntrack

For your reference, below are several resources you can consult to get detailed information on using

iptables on Linux servers:

• Red Hat Enterprise Linux 7 Security Guide contains a section focusing on packet filtering basics and

explaining various options available for iptables.

• iptables Tutorial 1.2.2 explains in great detail how iptables is structured and works.

10.6.2 Using iptables Modules in Containers

Using iptablesmodules in containers requires additional configuration on your part.

10.6.2.1 Configuring iptables Modules

To set the state of iptablesmodules for backup/restore or live migration, use the prlctl set --netfilter

command. If some of the iptablesmodules allowed for a container are not loaded on the hardware node

where that container has been restored or migrated, they will be automatically loaded when that container

starts. For example, the command

prlctl set MyCT --netfilter stateful

will make sure that all modules except NAT-related will be allowed and loaded for the container MyCT (if

required) on a hardware node where it has been restored or migrated.

....
Note: The default setting is full, which allows all modules.

184

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/index.html
http://www.frozentux.net/iptables-tutorial/iptables-tutorial.html

10.7. Using SCTP in Containers and Virtual Machines

10.6.2.2 Using conntrack Rules and NAT Tables

To limit the maximum number of conntrack slots available for each container on the hardware node, set the

net.netfilter.nf_conntrack_max variable. For example:

sysctl -w net.netfilter.nf_conntrack_max=50000

The value of net.netfilter.nf_conntrack_max cannot exceed the value of net.nf_conntrack_max.

....

Note: Even if a container is under a DoS attack and all its conntrack slots are in use, other containers

will not be affected, still being able to create as many connections as set in

net.netfilter.nf_conntrack_max.

10.7 Using SCTP in Containers and Virtual
Machines
Virtuozzo supports the Stream Control Transmission Protocol (SCTP) in both containers and virtual machines.

In virtual machines, SCTP can be set up and used like on any physical machine. In containers, SCTP support is

disabled by default. To enable SCTP in containers, load the sctp kernel module on the hardware node with

modprobe sctp

After the module is loaded, you can create and use SCTP sockets inside containers with standard Linux tools.

If required, add an sctp entry to the /etc/modules-load.d/vz.conf file to automatically load the sctp kernel

module on hardware node start.

....
Note: Live migration via SCTP is not supported.

10.8 Creating Configuration Files for New
Linux Distributions
Distribution configuration files are used to distinguish among containers running different Linux versions

and to determine what scripts should be executed when performing the relevant container-related

185

Chapter 10. Advanced Tasks

operations (e.g., assigning a new IP address to the container).

All Linux distributions shipped with Virtuozzo have their own configuration files located in the

/usr/libexec/libvzctl/dists/ directory on the hardware node. However, you may wish to create your own

distribution configuration files to support new Linux versions released. Let us assume that you wish your

containers to run the CentOS 7 Linux distribution and, therefore, have to make the centos-7.conf distribution

configuration file to define what scripts are to be executed while performing major tasks with containers

running this Linux version. To do this:

1. In the container configuration file (with the name of /etc/vz/conf/<UUID>.conf), specify centos-7 as the

value of the DISTRIBUTION variable (for example, DISTRIBUTION="centos-7").

2. Create the centos-7.conf configuration file in the /usr/libexec/libvzctl/dists/ directory. The easiest

way to do it is copy one of the existing configuration files by executing the following command in the

/usr/libexec/libvzctl/dists/ directory:

cp fedora.conf centos-7.config

In the example above, we assume that the fedora.conf file is present in the

/usr/libexec/libvzctl/dists/ directory on the hardware node. In case it is not, you may use any other

distribution configuration file available on your server.

3. Open the centos.conf file for editing, go to the first entry and, in the right part of the entry, specify the

name of the script you wish to be run on issuing the prlctl command with the parameter specified in

the left part of the entry. For example, if you wish the script to be executed while assigning a new IP

address to your container and the script has the my_centos_script name, your entry should look as

follows:

ADD_IP=my_centos_script-add_ip.sh

4. Repeat Step 3 for all entries in the file.

5. Place the scripts for the new Linux distribution to the /usr/libexec/libvzctl/dists/scripts directory on

the Node. Make sure the names of these scripts coincide with those specified in the centos-7.conf file.

186

10.9. Aligning Disks and Partitions in Virtual Machines

10.9 Aligning Disks and Partitions in Virtual
Machines
Most of the modern operating systems automatically align partitions when they are installed in virtual

machines. For example, Windows Server 2008 creates a default partition offset of 1024 KB to satisfy the

partition alignment requirements. The following figure shows an example of correct partition alignment:

In this example, any cluster (the smallest unit of data) in the guest OS file system is aligned with the

boundaries of an NFS block, and reading from or writing to a cluster requires only access to one NFS block.

For example, reading from Cluster 1 causes only a read from Block 1.

At the same time, virtual machines running non-modern systems (for example, Windows Server 2008 or Red

Hat Enterprise Linux 5) do usually have misaligned partitions, which is shown in the figure below:

187

Chapter 10. Advanced Tasks

In this example, clusters of the guest OS file system do not match the boundaries of NFS blocks, and reading

from or writing to a cluster requires access to several NFS blocks. For example, reading from Cluster 1 causes

two reads: from Block 1 and from Block 2. This results in a slower read time as compared to properly aligned

partitions and leads to performance degradation.

10.9.1 Aligning Partitions

Basically, to align disks and partitions in virtual machines, you need to set an offset so that clusters in the

guest OS file system match the volume block size on your NFS storage. Usually, the block size of most

network storages is 512 bytes or a multiple of 512 bytes. As an example, the following sections describe the

procedure of aligning disks and partitions for Linux and Windows virtual machines assuming that the size of

your NFS blocks is 512 bytes.

When deciding on aligning disks and partitions, take into account that this process destroys all data on these

disks and partitions. So if you want to have a correctly aligned system partition, you need to align your disks

and partitions before creating a virtual machine and installing a guest operating system in it. If you do not

want an aligned system partition, you can first create a virtual machine and install a guest OS in it, and then

align your data disks from inside the virtual machine.

The sections below demonstrate how to align disks and partitions before you start installing a guest OS. You

can, however, use a similar procedure to align data disks and partitions from inside your virtual machines.

10.9.2 Checking Partition Alignment in Existing Virtual Machines

First of all, you may wish to know how you can check that the partitions of a virtual machine are not aligned.

Depending on the operating system installed in the virtual machine, you can do the following.

10.9.2.1 Linux Virtual Machines

To check the partition alignment in a Linux virtual machine, log in to this virtual machine and run the

following command:

fdisk -l -u /dev/device_name

For example, to check the partition alignment on the sdc device, you can run this command:

fdisk -l -u /dev/sdc
Disk /dev/sdc: 73.0 GB, 73014444032 bytes

188

10.9. Aligning Disks and Partitions in Virtual Machines

255 heads, 63 sectors/track, 8876 cylinders, total 142606336 sectors
Units = sectors of 1 * 512 = 512 bytes

Device Boot Start End Blocks Id System
/dev/sdc1 * 63 208844 104391 83 Linux
/dev/sdc2 208845 142592939 71192047+ 8e Linux LVM

Pay attention to the number of sectors in the Start column. Usually, a sector contains 512 bytes, which

makes up 32256 bytes for 63 sectors for the /dev/sdc1 partition and 26105625 bytes for 208845 for the

/dev/sdc2 partition. For a partition to be properly aligned, it must align with 4096 byte boundaries (assuming

that the block size of your storage is 4 KB). As 32256 and 106928640 is not a multiple of 4096, the partitions

/dev/sdc1 and /dev/sdc2 are not aligned properly. To align them, you should offset

• the /dev/sdc1 partition by 1 sector so that it starts at 64. In this case, 64 sectors each containing 512

bytes make up 32768 that is a multiple of 4096.

• the /dev/sdc2 partition by 3 sectors so that it starts at 208848. In this case, 208848 sectors each

containing 512 bytes make up 106930176 that is a multiple of 4096.

10.9.2.2 Windows Virtual Machines

To check the partition alignment in a Windows virtual machine, do the following:

1. Click Start > Run, type msinfo32.exe, and press Enter to open System Information.

2. Navigate to Components > Storage > Disks, and look for the Partition Starting Offset field in the right

part of the window.

189

Chapter 10. Advanced Tasks

To find out if the partition is aligned properly, use the method described above for Linux virtual machines.

10.9.3 Aligning Disks for Linux Virtual Machines

To align partitions for use in a Linux virtual machine, you need a working Linux virtual machine. Once you

have it at hand, follow the steps below:

1. Create a new disk for the virtual machine. On this disk, you will create aligned partitions. Then you will

connect the disk to a new virtual machine and install your Linux guest OS on this disk.

2. Start the virtual machine and log in to it using SSH.

3. Run the fdisk utility for the disk you want to align.

4. Create a primary partition, and set the starting block number for the created partition.

5. Repeat steps 3-4 to create and align all partitions you plan to have in your new virtual machine.

The following example creates partition #1 with the size of 1 GB on the /dev/sda device and uses the offset of

64 KB.

fdisk /dev/sda
Device contains neither a valid DOS partition table, nor Sun, SGI or OSF disklabel
Building a new DOS disklabel. Changes will remain in memory only,
until you decide to write them. After that, of course, the previous

190

10.9. Aligning Disks and Partitions in Virtual Machines

content won't be recoverable.
The number of cylinders for this disk is set to 1044.
There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other OSs

(e.g., DOS FDISK, OS/2 FDISK)
Warning: invalid flag 0x0000 of partition table 4 will be corrected by w(rite)
Command (m for help): n
Command action

e extended
p primary partition (1-4)

p
Partition number (1-4): 1
First sector (63-16777215, default 63): 64
Last sector or +size or +sizeM or +sizeK (64-16777215, default 16777215): 208848
Command (m for help): w
The partition table has been altered!
Calling ioctl() to re-read partition table.
Syncing disks.

Once you align all the necessary partitions, disconnect the disk from the virtual machine. When creating a

new virtual machine, choose this disk for use with this virtual machine.

10.9.4 Aligning Partitions for Windows Virtual Machines

To align a disk for a Windows virtual machine, you need a working Windows virtual machine. Once you have

it at hand, you can use the diskpart or diskpar utility (depending on your operating system) to align the disk:

1. Create a new disk for the virtual machine. On this disk, you will create aligned partitions. Then you will

connect the disk to a new virtual machine and install your Windows guest OS on this disk.

2. Open the command-line prompt, and run the diskpart or diskpar utility.

3. Select the disk you want to align.

4. Create the primary partition on the disk, and align it.

5. Exit the diskpart or diskpar utility, and close the command-line prompt.

The following example demonstrates how to use the diskpart utility to align disk 1 by setting the offset of 64

for it:

191

Chapter 10. Advanced Tasks

Once you align the virtual disk, disconnect it from the virtual machine. When creating a new virtual machine,

choose this disk for use with this virtual machine.

10.9.5 Creating a Template of a Virtual Machine with Aligned Partitions

To facilitate the procedure of creating virtual machines that have aligned system partitions, you can create a

template of the aligned virtual machine and deploy new virtual machines from this template.

For example, if you align a disk by following the steps in Aligning Partitions for Windows Virtual Machines on

page 191, then create a new virtual machine that uses this disk, and then install Windows Server 2008

operating system in the virtual machine, you will have a clean Windows Server 2008 installation on the

correctly aligned disk. Now you can create a template of this virtual machine and use this template each time

you need to deploy a new virtual machine with Windows Server 2008.

10.10 Uninstalling Virtuozzo Guest Tools from
Virtual Machines

....

Note: Running virtual machines that do not have Virtuozzo guest tools installed cannot be configured

from the physical server.

192

10.10. Uninstalling Virtuozzo Guest Tools from Virtual Machines

If you find out that Virtuozzo guest tools are incompatible with some software inside a virtual machine, you

can uninstall them from that VM. The steps you need to perform to remove guest tools differ depending on

the guest operating system and are described in the sections below.

10.10.1 Uninstalling Guest Tools from Linux Virtual Machines

To uninstall Virtuozzo guest tools from a Linux guest, log in to the virtual machine and do as follows:

1. Remove the packages:

1.1. On RPM-based systems (CentOS and other):

yum remove dkms-vzvirtio_balloon prl_nettool qemu-guest-agent-vz vz-guest-udev

1.2. On DEB-based systems (Debian and Ubuntu):

apt-get remove vzvirtio-balloon-dkms prl-nettool qemu-guest-agent-vz vz-guest-udev

If any of the packages listed above are not installed on your system, the command will fail. In this

case, exclude these packages from the command and run it again.

2. Remove the files:

rm -f /usr/bin/prl_backup /usr/share/qemu-ga/VERSION /usr/bin/install-tools \
/etc/udev/rules.d/90-guest_iso.rules /usr/local/bin/fstrim-static /etc/cron.weekly/fstrim

3. Reload the udev rules:

udevadm control --reload

After removing Virtuozzo guest tools, restart the virtual machine.

....

Note: After Virtuozzo guest tools are removed from a virtual machine, their state is shown as possibly

installed.

10.10.2 Uninstalling Guest Tools from Windows Virtual Machines

To uninstall Virtuozzo guest tools for Windows, log in to the virtual machine and do as follows:

1. Remove virtualized device drivers:

....

Important: Do not remove the VirtIO/SCSI hard disk driver and NetKVM network driver. Without

the former, the virtual machine will not boot; without the latter, it will lose network connectivity.

193

Chapter 10. Advanced Tasks

1.1. From the Windows Startmenu, open Control Panel > System and Security > System > Device

Manager.

1.2. Double-click the device to expand the list of installed drivers.

1.3. Right-click the driver to be removed and select Uninstall from the drop-down menu.

2. Uninstall QEMU guest agent and Virtuozzo Guest Tools:

2.1. From the Windows Startmenu, open Control Panel > Programs > Programs and Features.

2.2. Right-click QEMU guest agent and select Uninstall from the drop-down menu.

2.3. Right-click Virtuozzo Guest Tools and select Uninstall from the drop-down menu.

194

10.11. Enabling Legacy VM Debug Mode

3. Stop and delete Guest Tools Monitor:

> sc stop VzGuestToolsMonitor
> sc delete VzGuestToolsMonitor

4. Unregister Guest Tools Monitor from Event Log:

> reg delete HKLM\SYSTEM\CurrentControlSet\services\eventlog\Application\VzGuestToolsMonitor

5. Delete the autorun registry key for RebootNotifier:

> reg delete HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run /v VzRebootNotifier

6. Delete the C:\Program Files\Qemu-ga\ directory.

If VzGuestToolsMonitor.exe is locked, close all the Event Viewer windows. If it remains locked, restart the

eventlog service:

> sc stop eventlog
> sc start eventlog

After removing Virtuozzo guest tools, restart the virtual machine.

....

Note: After Virtuozzo guest tools are removed from a virtual machine, their state is shown as possibly

installed.

10.11 Enabling Legacy VM Debug Mode
The legacy VM debug modemakes sure that legacy VMs that failed to convert to the Virtuozzo 7 format during

migration or restoration from backup are not deleted from the destination Virtuozzo 7 server after failed

conversion. With the debug mode enabled, such virtual machines remain stopped or running with disabled

network to let the technical support team study the memory dump and find out the reason for failure.

If you are trying to migrate or restore backup of a legacy virtual machine to a Virtuozzo 7 server and

conversion stage fails, you can enable the debug mode on the destination Virtuozzo 7 server, make another

migration or restore attempt, send the problem report, and contact the technical support team.

To enable the legacy VM debug mode on the destination Virtuozzo 7 server:

1. Stop the dispatcher:

systemctl stop prl-disp.service

195

Chapter 10. Advanced Tasks

....

Note: While the dispatcher is stopped, you cannot manage and collect stats of VMs and

containers. Running VMs and containers are not stopped.

2. In /etc/vz/dispatcher.xml, change <LegacyVmUpgrade>0</LegacyVmUpgrade> to

<LegacyVmUpgrade>1</LegacyVmUpgrade>.

3. Start the dispatcher:

systemctl start prl-disp.service

10.12 Installing Optional Virtuozzo Packages
Virtuozzo comes with everything you may need already installed. However, you can also install optional

Virtuozzo packages from remote repositories by means of the yum command.

....

Note: For more information on using yum in Virtuozzo, see Updating Virtuozzo on page 140 and the yum

manual page.

10.13 Enabling Nested Virtualization in Virtual
Machines

....

Warning: This feature is experimental and tested only on Linux guests. The operation of nested

virtual machines may be unstable.

Virtuozzo supports nested Intel VT-x virtualization in virtual machines.

To enable nested virtualization, do the following:

1. Stop all running or paused virtual machines on the node.

2. Unload the kvm-intelmodule from the kernel:

rmmod kvm_intel

3. Add the line options kvm-intel nested=y to the dist.conf file:

196

10.14. Participating in Customer Experience Program

echo 'options kvm-intel nested=y' >> /etc/modprobe.d/dist.conf

4. Load the kvm-intelmodule:

modprobe kvm_intel

5. Enable nested virtualization in the desired virtual machine:

prlctl set MyVM --nested-virt on

....

Note:

1. A guest operating system in a nested virtual machine will not be able to obtain an IP address via

DHCP if ipfilter, macfilter, and preventpromisc parameters of the host VM’s bridged network

adapter are set to no.

2. You cannot change CPU features mask for nested virtual machines using the prlsrvctl set

--cpu-features-mask command.

10.14 Participating in Customer Experience
Program
By participating in the Customer Experience Program (CEP) you agree to send to Virtuozzo information about

configuration of your physical server and virtual environments, the way you use Virtuozzo products, and

technical issues that you encounter.

....

Note: No private information like your name, e-mail address, phone number, or keyboard input will

be collected.

The program is voluntary and helps improve Virtuozzo products to better fit your needs.

When installing Virtuozzo in the attended mode, you automatically join CEP. You can, however, opt out of the

program at any time by stopping and disabling the disp-helper service:

systemctl stop disp-helper
systemctl disable disp-helper

By default, Virtuozzo will collect information once a week, although you can change this interval. For

example, to have the data collected every two weeks, do as follows:

197

Chapter 10. Advanced Tasks

1. In the configuration file /etc/vz/disp_helper.json, change the report_period value to 14d:

"report_period": "14d",

2. Restart disp-helper to apply changes:

systemctl restart disp-helper

To fine-tune which information about your physical server or virtual environments is collected, you can

disable or enable corresponding .py scripts in the /usr/share/virtuozzo/cep-scripts directory. For example,

to prevent collection of data about your virtual environments, you can disable the libvirt_guests.py script

as follows:

chmod a-x libvirt_guests.py

To re-enable the script, run

chmod a+x libvirt_guests.py

When installing Virtuozzo in the unattended mode, you can specify the cep parameter in the kickstart file. For

more details, see the Virtuozzo 7 PXE Installation Guide.

198

http://docs.virtuozzo.com/virtuozzo_7_installation_using_pxe_guide/preparing-kickstart-file/virtuozzo-kickstart-options.html

CHAPTER 11

Troubleshooting

This chapter provides the information about problems that may occur during your work with Virtuozzo and

suggests the ways to solve them.

11.1 General Considerations
The general issues to take into consideration when troubleshooting your system are listed below. You should

read them carefully before trying to solve more specific problems.

• You should always remember where you are currently located in your terminal. Check it periodically

using the pwd, hostname, ifconfig, cat /proc/vz/veinfo commands. One and the same command

executed inside a virtual machine or container and on the hardware node can lead to very different

results. You can also set up the PS1 environment variable to show the full path in the bash prompt. To

do this, add these lines to /root/.bash_profile:

PS1="[\u@\h \w]$ "
export PS1

• If the hardware node slows down, use vmstat, ps (ps axfw), dmesg, htop (vztop) to find out what is

happening, never reboot the machine without investigation. If no thinking helps restore the normal

operation, use the Alt+SysRq sequences to dump the memory (showMem) and processes (showPc).

• Do not run any binary or script that belongs to a container directly from the hardware node, for

example, do not ever do this:

cd /vz/root/99/etc/init.d
./httpd status

Any script inside a container could have been changed to whatever the container owner chooses: it

199

Chapter 11. Troubleshooting

could have been trojaned, replaced to something like rm -rf, etc. You can use only prlctl exec/prlctl

enter to execute programs inside a container.

• Do not use init scripts on the hardware node. An init script may use killall to stop a service, which

means that all similar processes will be killed in all containers. You can check /var/run/Service.pid and

kill the correspondent process explicitly.

• You must be able to detect any rootkit inside a container. It is recommended to use the chkrootkit

package for detection (you can download the latest version from http://www.chkrootkit.org), or at least

run

rpm -Va|grep "S.5"

to check up if the MD5 sum has changed for any RPM file.

You can also run nmap, for example:

nmap -p 1-65535 192.168.0.1
Starting nmap V. 2.54BETA22 (www.insecure.org/nmap/)
Interesting ports on (192.168.0.1):
(The 65531 ports scanned but not shown below are in
state: closed)

Port State Service
21/tcp open ftp
22/tcp open ssh
80/tcp open http
111/tcp open sunrpc
Nmap run completed -- 1 IP address (1 host up) scanned
in 169 seconds

to check if any ports are open that should normally be closed.

That could however be a problem to remove a rootkit from a container and make sure it is 100%

removed. If you’re not sure, create a new container for that customer and migrate his/her sites and

mail there.

• Check the /var/log/ directory on the hardware node to find out what is happening on the system.

There are a number of log files that are maintained by the system and Virtuozzo (the boot.log, messages,

etc.), but other services and programs may also put their own log files here depending on your

distribution of Linux and the services and applications that you are running. For example, there may be

logs associated with running a mail server (the maillog file), automatic tasks (the cron file), and others.

However, the first place to look into when you are troubleshooting is the /var/log/messages log file. It

contains the boot messages when the system came up as well as other status messages as the system

runs. Errors with I/O, networking, and other general system errors are reported in this file. So, we

recommend that you read to the messages log file first and then proceed with the other files from the

200

http://www.chkrootkit.org

11.2. Kernel Troubleshooting

/var/log/ directory.

• Subscribe to bug tracking lists. You should keep track of new public DoS tools or remote exploits for the

software and install them into containers or at hardware nodes.

• When using iptables, there is a simple rule for Chains usage to help protect both the hardware node

and its containers:

• use INPUT, OUTPUT to filter packets that come in/out the hardware node

• use FORWARD to filter packets that are designated for containers

11.2 Kernel Troubleshooting

11.2.1 Using ALT+SYSRQ Keyboard Sequences

Press ALT+SYSRQ+H and check what is printed at the hardware node console, for example:

SysRq: unRaw Boot Sync Unmount showPc showTasks showMem loglevel0-8 tErm kIll \
killalL Calls Oops

This output shows you what ALT+SYSRQ sequences you may use for performing this or that command. The

capital letters in the command names identify the sequence. Thus, if there are any troubles with the machine

and you’re about to reboot it, please use the following key sequences before pressing the Power button:

• ALT+SYSRQ+M to dump memory info

• ALT+SYSRQ+P to dump processes states

• ALT+SYSRQ+S to sync disks

• ALT+SYSRQ+U to unmount filesystems

• ALT+SYSRQ+L to kill all processes

• ALT+SYSRQ+U try to unmount once again

• ALT+SYSRQ+B to reboot

If the server is not rebooted after that, you can press the Power button.

201

Chapter 11. Troubleshooting

11.2.2 Saving Kernel Faults (OOPS)

You can use the following command to check for the kernel messages that should be reported to Virtuozzo

developers:

grep -E "Call Trace|Code" /var/log/messages*

Then, you should find kernel-related lines in the corresponding log file and figure out what kernel was

booted when the oops occurred. Search backward for the Linux string, look for strings like:

Sep 26 11:41:12 kernel: Linux version 2.6.18-8.1.1.el5.028stab043.1 \
(root@rhel5-32-build) (gcc version 4.1.1 20061011 (Red Hat 4.1.1-30)) \
#1 SMP Wed Aug 29 11:51:58 MSK 2007

An oops usually starts with some description of what happened and ends with the Code string. Here is an

example:

Aug 25 08:27:46 boar BUG: unable to handle kernel NULL pointer dereference at \
virtual address 00000038
Aug 25 08:27:46 boar printing eip:
Aug 25 08:27:46 boar f0ce6507
Aug 25 08:27:46 boar *pde = 00003001
Aug 25 08:27:46 boar Oops: 0000 [#1]
Aug 25 08:27:46 boar SMP
Aug 25 08:27:46 boar last sysfs file:
Aug 25 08:27:46 boar Modules linked in: snapapi26(U) bridge(U) ip_vzredir(U) \
vzredir(U) vzcompat(U) vzrst(U) i
p_nat(U) vzcpt(U) ip_conntrack(U) nfnetlink(U) vzlinkdev(U) vzethdev(U) vzevent(U) \
vzlist(U) vznet(U) vzmo
n(U) xt_tcpudp(U) ip_vznetstat(U) vznetstat(U) iptable_mangle(U) iptable_filter(U) \
ip_tables(U) vztable(U) vzdquota(U) vzdev(U) autofs4(U) hidp(U) rfcomm(U) l2cap(U) \
bluetooth(U) sunrpc(U) ipv6(U) xt_length(U) ipt_ttl(U) xt_tcpmss(U) ipt_TCPMSS(U) \
xt_multiport(U) xt_limit(U) ipt_tos(U) ipt_REJECT(U) x_tables(U) video(U) sbs(U) \
i2c_ec(U) button(U) battery(U) asus_acpi(U) ac(U) lp(U) floppy(U) sg(U) pcspkr(U) \
i2c_piix4(U) e100(U) parport_pc(U) i2c_core(U) parport(U) cpqphp(U) eepro100(U) \
mii(U) serio_raw(U) ide_cd(U) cdrom(U) ahci(U) libata(U) dm_snapshot
(U) dm_zero(U) dm_mirror(U) dm_mod(U) megaraid(U) sym53c8xx(U) \
scsi_transport_spi(U) sd_mod(U) scsi_mod(U) ext3(U) jbd(U) ehci_hcd(U) ohci_hcd(U) \
uhci_hcd(U)
Aug 25 08:27:46 boar CPU: 1, VCPU: -1.1
Aug 25 08:27:46 boar EIP: 0060:[<f0ce6507>] Tainted: P VLI
Aug 25 08:27:46 boar EFLAGS: 00010246 (2.6.18-028stab043.1-ent #1)
Aug 25 08:27:46 boar EIP is at clone_endio+0x29/0xc6 [dm_mod]
Aug 25 08:27:46 boar eax: 00000010 ebx: 00000001 ecx: 00000000 edx: 00000000
Aug 25 08:27:46 boar esi: 00000000 edi: b6f52920 ebp: c1a8dbc0 esp: 0b483e38
Aug 25 08:27:46 boar ds: 007b es: 007b ss: 0068
Aug 25 08:27:46 boar Process swapper (pid: 0, veid: 0, ti=0b482000 task=05e3f2b0 \
task.ti=0b482000)
Aug 25 08:27:46 boar Stack: 0b52caa0 00000001 00000000 b6f52920 00000000f0ce64de \
00000000 02478825

202

11.2. Kernel Troubleshooting

Aug 25 08:27:46 boar 00000000 c18a8620 b6f52920 271e1a8c 024ca03800000000 00000000 \
00000000
Aug 25 08:27:46 boar 00000000 00000000 c18a3c00 00000202 c189e89400000006 00000000 \
05cb7200
Aug 25 08:27:46 boar Call Trace:
Aug 25 08:27:46 boar [<f0ce64de>] clone_endio+0x0/0xc6 [dm_mod]
Aug 25 08:27:46 boar [] bio_endio+0x50/0x55
Aug 25 08:27:46 boar [<024ca038>] __end_that_request_first+0x185/0x47c
Aug 25 08:27:46 boar [<f0c711eb>] scsi_end_request+0x1a/0xa9 [scsi_mod]
Aug 25 08:27:46 boar [<02458f04>] mempool_free+0x5f/0x63
Aug 25 08:27:46 boar
Aug 25 08:27:46 boar [<f0c713c3>] scsi_io_completion+0x149/0x2f3 [scsi_mod]
Aug 25 08:27:46 boar [<f0c333b9>] sd_rw_intr+0x1f1/0x21b [sd_mod]
Aug 25 08:27:46 boar [<f0c6d3b9>] scsi_finish_command+0x73/0x77 [scsi_mod]
Aug 25 08:27:46 boar [<024cbfa2>] blk_done_softirq+0x4d/0x58
Aug 25 08:27:46 boar [] __do_softirq+0x84/0x109
Aug 25 08:27:46 boar [<0242650d>] do_softirq+0x36/0x3a
Aug 25 08:27:46 boar [<024050b7>] do_IRQ+0xad/0xb6
Aug 25 08:27:46 boar [<024023fa>] default_idle+0x0/0x59
Aug 25 08:27:46 boar [<0240242b>] default_idle+0x31/0x59
Aug 25 08:27:46 boar [<024024b1>] cpu_idle+0x5e/0x74
Aug 25 08:27:46 boar =======================
Aug 25 08:27:46 boar Code: 5d c3 55 57 89 c7 56 89 ce 53 bb 01 00 00 00 83 ec 0c \
8b 68 3c 83 7f 20 00 8b 45 00 8b 00 89 44 24 04 8b 45 04 89 04 24 8b 40 04 <8b> \
40 28 89 44 24 08 0f 85 86 00 00 00 f6 47 10 01 75 0a 85 c9
Aug 25 08:27:46 boar EIP: [<f0ce6507>] clone_endio+0x29/0xc6 [dm_mod] \
SS:ESP0068:0b483e38
Aug 25 08:27:46 boar Kernel panic - not syncing: Fatal exception in interrupt

You can save the oops in a file to be able to provide it when asking for technical support.

11.2.3 Finding a Kernel Function That Caused the D Process State

If there are too many processes in the D state and you can’t find out what is happening, issue the following

command:

objdump -Dr /boot/vmlinux-'uname -r' >/tmp/kernel.dump

and then get the process list:

ps axfwln
F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND

100 0 20418 20417 17 0 2588 684 - R ? 0:00 ps axfwln
100 0 1 0 8 0 1388 524 145186 S ? 0:00 init
040 0 8670 1 9 0 1448 960 145186 S ? 0:00 syslogd -m 0
040 0 8713 1 10 0 1616 1140 11ea02 S ? 0:00 crond

Look for a number under the WCHAN column for the process in question. Then, open /tmp/kernel.dump in an

editor, find that number in the first column and then scroll backward to the first function name, which can

203

Chapter 11. Troubleshooting

look like this:

"c011e910 <sys_nanosleep>:"

Then you can tell if the process “lives” or is blocked into the found function.

11.3 Container Management Issues
This section includes recommendations on how to solve certain container issues.

11.3.1 Failure to Start a Container

An attempt to start a container fails.

11.3.1.1 Solution 1

If there is a message on the system console: IP address is already used, issue the cat /proc/vz/veinfo

command. The information about the container numeric identifier, container class, number of container’s

processes and container IP address shall be displayed for each running container. This shall also

demonstrate that your container is up, i.e. it must be running without any IP address assigned. Set its IP

address using the command:

prlctl set <CT_name> --ipadd <IP_address>

where <CT_name> is the container name and <IP_address> is the desired IP address.

11.3.1.2 Solution 2

The container might be configured incorrectly. Try to validate the container configuration and find out what

parameters have caused the error. Set appropriate values using the prlctl set command.

11.3.1.3 Solution 3

The container might have used all its disk quota (disk space). Check the quota (see Managing Disk Quotas on

page 77) and adjust its parameters if needed.

204

11.3. Container Management Issues

11.3.1.4 Solution 4

Run the prlctl console utility to log in and get access to the container console. The utility will provide

container startup/shutdown output that may be used to pinpoint the problem. For example:

prlctl console MyCT

where MyCT is the container name.

11.3.2 Failure to Access a Container from Network

11.3.2.1 Solution 1

The IP address assigned to the container might be already in use in your network. Make sure it is not. The

problem container address can be checked by issuing the following command:

grep IP_ADDRESS /etc/vz/conf/<UUID>.conf
IP_ADDRESS="10.0.186.101"

The IP addresses of other containers, which are running, can be checked by running

cat /proc/vz/veinfo

11.3.2.2 Solution 2

Make sure the routing to the container is properly configured. Containers can use the default router for your

network, or you may configure the hardware node as router for its containers.

11.3.3 Failure to Log In to a Container

The container starts successfully, but you cannot log in.

11.3.3.1 Solution 1

You are trying to connect via SSH, but access is denied. Probably you have not set the password of the root

user yet or there is no such user. In this case, use the prlctl set --userpasswd command. For example, for

the container MyCT you might issue the following command:

205

Chapter 11. Troubleshooting

prlctl set MyCT --userpasswd root:secret

11.3.3.2 Solution 2

Check forwarding settings by issuing the following command:

cat /proc/sys/net/ipv4/conf/venet0/forwarding

If it is 0 then change it to 1 by issuing the following command:

echo 1 > /proc/sys/net/ipv4/conf/venet0/forwarding

11.4 Getting Technical Support
You can get technical support via the mailing list, bug tracker, and support forum. For more information, visit

https://virtuozzo.com/support/.

206

https://virtuozzo.com/support/

	Learning Virtuozzo Basics
	Virtuozzo Overview
	Differences between Virtuozzo and OpenVZ
	OS Virtualization Layer
	Basics of OS Virtualization
	Virtuozzo Containers
	Virtuozzo Container Hardware

	Memory and IOPS Deduplication
	Templates

	Hardware Virtualization Layer
	Hardware Virtualization Basics
	Virtuozzo Virtual Machines
	Intel Virtualization Technology Support

	Virtual Machine Hardware
	Virtual Machine Files
	Support of Virtual and Real Media
	Supported Types of Hard Disks
	Virtual Hard Disks
	CD/DVD Disc Images

	Virtuozzo Configuration
	Resource Management
	Understanding Licensing
	Physical Server Availability Considerations

	Managing Virtual Machines and Containers
	Creating Virtual Machines and Containers
	Choosing OS EZ Templates for Containers
	Listing OS EZ Templates
	Installing and Caching OS EZ Templates

	Creating Containers
	Creating Virtual Machines
	Supported Guest Operating Systems
	Virtual Machines
	Containers

	Performing Initial Configuration of Virtual Machines and Containers
	Using cloud-init for Virtual Machine Guest Initialization
	Installing Virtuozzo Guest Tools
	Configuring Network Settings
	Setting Passwords for Virtual Machines and Containers
	Setting Startup Parameters

	Starting, Stopping, Restarting, and Querying Status of Virtual Machines and Containers
	Starting Virtual Machines and Containers
	Stopping Virtual Machines and Containers
	Restarting Virtual Machines and Containers
	Checking Status of Virtual Machines and Containers

	Listing Virtual Machines and Containers
	Cloning Virtual Machines and Containers
	Creating Linked Clones
	Configuring Default Directories

	Suspending Virtual Machines and Containers
	Running Commands in Virtual Machines and Containers
	Deleting Virtual Machines and Containers
	Viewing Detailed Information About Virtual Machines and Containers
	Managing Virtual Machine and Container Backups
	Creating Virtual Machine and Container Backups
	Listing Virtual Machine and Container Backups
	Restoring Virtual Machines and Containers from Backups
	Deleting Virtual Machine and Container Backups
	Backing Up Entire Servers
	Attaching Backups to Virtual Machines and Containers
	Attaching Backups to Linux Virtual Machines
	Attaching Backups to Windows Virtual Machines
	Attaching Backups to Linux Containers

	Detaching Backups from Virtual Machines and Containers

	Managing Templates
	Creating Templates
	Listing Templates
	Deploying Templates
	Storing Templates on Virtuozzo Storage

	Managing Snapshots
	Creating Snapshots
	Creating Virtual Machine Snapshots
	Creating Container Snapshots
	Snapshot Branching
	Restrictions and Recommendations

	Listing Snapshots
	Reverting to Snapshots
	Deleting Snapshots

	Migrating Virtual Machines and Containers
	Types of Migration
	Offline Migration of Virtual Machines and Containers
	Live Migration of Virtual Machines and Containers

	Migrating Virtual Machines and Containers Between Virtuozzo 7 Servers
	Migrating Virtual Machines and Containers from Virtuozzo 6 to Virtuozzo 7
	Migrating Virtual Machine and Container Templates
	Migrating EZ Templates

	Performing Container-specific Operations
	Reinstalling Containers
	Customizing Container Reinstallation

	Enabling VPN for Containers
	Setting Up NFS Server in Containers
	Mounting NFS Shares on Container Start
	Managing Container Virtual Disks
	Adding Virtual Disks to Containers
	Configuring Container Virtual Disks
	Deleting Virtual Disks from Containers

	Restarting Containers
	Creating SimFS-based Containers

	Performing Virtual Machine-specific Operations
	Pausing Virtual Machines
	Managing Virtual Machine Devices
	Adding New Devices
	Initializing Newly Added Disks
	Configuring Virtual Devices
	Deleting Devices

	Making Screenshots
	Configuring IP Address Ranges for Host-Only Networks
	Configuring Virtual Machine Crash Mode

	Managing Resources
	Managing CPU Resources
	Configuring CPU Units
	Configuring CPU Affinity for Virtual Machines and Containers
	Configuring CPU Limits for Virtual Machines and Containers
	Using –cpulimit to Set CPU Limits
	Using –cpus to Set CPU Limits
	Using –cpulimit and –cpus Simultaneously
	CPU Limit Specifics

	Binding CPUs to NUMA Nodes
	Enabling CPU Hotplug for Virtual Machines
	Configuring CPU Topology for Virtual Machines

	Managing Disk Quotas
	Managing Virtual Disks
	Resizing Virtual Disks
	Checking the Minimum Disk Capacity

	Compacting Disks
	Managing Virtual Machine Disk Interfaces

	Managing Network Accounting and Bandwidth
	Network Traffic Parameters
	Configuring Network Classes
	Viewing Network Traffic Statistics
	Configuring Traffic Shaping
	Setting BANDWIDTH Parameter
	Setting TOTALRATE Parameter
	Setting RATEMPU Parameter
	Setting RATE and RATEBOUND Parameters
	Traffic Shaping Example

	Managing Disk I/O Parameters
	Configuring Priority Levels for Virtual Machines and Containers
	Configuring Disk I/O Bandwidth
	Configuring the Number of I/O Operations Per Second
	Setting the Direct Access Flag Inside Containers

	Viewing Disk I/O Statistics
	Setting I/O Limits for Backup and Migration Operations

	Managing Containers Memory Parameters
	Configuring Main VSwap Parameters
	Configuring Container Memory Guarantees
	Configuring Container Memory Allocation Limit
	Configuring Container OOM Killer Behavior
	Tuning VSwap

	Managing Virtual Machines Memory Parameters
	Configuring Virtual Machine Memory Size
	Configuring Virtual Machine Video Memory Size
	Enabling Virtual Machine Memory Hotplugging
	Configuring Virtual Machine Memory Guarantees

	Managing Container Resource Configuration
	Splitting Server Into Equal Pieces
	Applying New Configuration Samples to Containers

	Managing Virtual Machine Configuration Samples
	Creating a Configuration Sample
	Applying Configuration Samples to Virtual Machines
	Parameters Applied from Configuration Samples

	Monitoring Resources

	Managing Services and Processes
	What Are Services and Processes
	Main Operations on Services and Processes
	Managing Processes and Services
	Viewing Active Processes and Services
	Monitoring Processes in Real Time
	Determining Container UUIDs by Process IDs

	Managing Network
	Managing Network Adapters on the Hardware Node
	Networking Modes in Virtuozzo
	Container Network Modes
	Host-Routed Mode for Containers
	Bridged Mode for Containers

	Virtual Machine Network Modes
	Bridged Mode for Virtual Machines
	Host-Routed Mode for Virtual Machines

	Differences Between Host-Routed and Bridged Network Modes

	Configuring Virtual Machines and Containers in Host-Routed Mode
	Setting IP Addresses
	Setting DNS Server Addresses
	Setting DNS Search Domains
	Switching Virtual Machine Adapters to Host-Routed Mode

	Configuring Virtual Machines and Containers in Bridged Mode
	Managing Virtual Networks
	Creating Virtual Networks
	Creating Network Bridges for Network Adapters
	Configuring Virtual Network Parameters
	Listing Virtual Networks
	Connecting Virtual Networks to Adapters
	Deleting Virtual Networks

	Managing Virtual Network Adapters in Virtual Environments
	Creating and Deleting Virtual Adapters
	Configuring Virtual Adapter Parameters
	Connecting Virtual Environments to Virtual Networks

	Managing Licenses
	Installing the License
	Setting Up Proxy Server for License Activation
	Installing the License from Product Keys, Activation Codes, or License Files

	Updating the License
	Switching License to a New HWID

	Transferring the License to Another Server
	Viewing the License
	License Statuses

	Keeping Your System Up To Date
	Updating Virtuozzo
	Updating All Components
	Updating Kernel
	Updating KVM/QEMU Hypervisor in Virtual Machines
	Updating KVM/QEMU Hypervisor Manually

	Updating EZ Templates

	Updating Virtuozzo Kernel with ReadyKernel
	Installing ReadyKernel Patches Automatically
	Managing ReadyKernel Patches Manually
	Dowloading, Installing, and Loading ReadyKernel Patches
	Loading and Unloading ReadyKernel Patches
	Installing and Removing ReadyKernel Patches for Specific Kernels
	Downgrading ReadyKernel Patches

	Disabling Loading of ReadyKernel Patches on Boot
	Managing ReadyKernel Logs

	Updating Software in Virtual Machines
	Updating Virtuozzo Guest Tools in Virtual Machines

	Updating Containers
	Updating EZ Template Packages in Containers
	Updating OS EZ Template Caches

	Managing High Availability Clusters
	Prerequisites for High Availability
	Enabling and Disabling High Availability on Nodes
	Disabling High Availability for Specific Virtual Machines and Containers
	Enabling High Availability for iSCSI Targets
	Disabling High Availability on Nodes

	Configuring Resource Relocation Modes
	Configuring Resource Relocation Modes on Nodes Participating in S3 or iSCSI Export
	Configuring HA Priority for Virtual Machines and Containers
	Managing CPU Pools
	Adding Nodes to CPU Pools
	Monitoring CPU Pools
	Removing Nodes from CPU Pools

	Monitoring Cluster Status
	Managing Cluster Resources with Scripts

	Hardening Your Virtuozzo Server
	Update Policy
	Audit Policy
	Storing Logs Remotely
	Viewing Critical Audit Messages

	Mount Policy
	Service Policy
	Account Policy
	Networking Policy

	Advanced Tasks
	Configuring Automatic Memory Management Policies
	Optimizing Virtual Machine Memory with Kernel Same-Page Merging
	Managing Host Services with VCMMD
	Managing Virtuozzo Storage Services with VCMMD

	Creating Customized Containers
	Using Golden Image Functionality
	Disabling Golden Image Functionality

	Using Customized EZ Templates
	EZ Template Configuration Files

	Creating Customized EZ Template RPMs

	Setting Up Docker in Virtuozzo Containers
	Setting Up Docker for Running in Swarm Mode
	Restrictions and Limitations for Docker in Virtuozzo Containers

	Managing Container Virtual Hard Disk Encryption
	Setting Up Encryption Key Requester
	Encrypting and Decrypting Container Virtual Hard Disks
	Encrypting System Swap

	Connecting to Virtual Machines and Containers via VNC
	Securing VNC Connections with SSL
	Enabling VNC Access to Virtual Machines
	Enabling VNC Access to Containers
	Connecting with a VNC Client

	Managing iptables Modules
	Using iptables Modules in Virtuozzo
	Using iptables Modules in Containers
	Configuring iptables Modules
	Using conntrack Rules and NAT Tables

	Using SCTP in Containers and Virtual Machines
	Creating Configuration Files for New Linux Distributions
	Aligning Disks and Partitions in Virtual Machines
	Aligning Partitions
	Checking Partition Alignment in Existing Virtual Machines
	Linux Virtual Machines
	Windows Virtual Machines

	Aligning Disks for Linux Virtual Machines
	Aligning Partitions for Windows Virtual Machines
	Creating a Template of a Virtual Machine with Aligned Partitions

	Uninstalling Virtuozzo Guest Tools from Virtual Machines
	Uninstalling Guest Tools from Linux Virtual Machines
	Uninstalling Guest Tools from Windows Virtual Machines

	Enabling Legacy VM Debug Mode
	Installing Optional Virtuozzo Packages
	Enabling Nested Virtualization in Virtual Machines
	Participating in Customer Experience Program

	Troubleshooting
	General Considerations
	Kernel Troubleshooting
	Using ALT+SYSRQ Keyboard Sequences
	Saving Kernel Faults (OOPS)
	Finding a Kernel Function That Caused the D Process State

	Container Management Issues
	Failure to Start a Container
	Solution 1
	Solution 2
	Solution 3
	Solution 4

	Failure to Access a Container from Network
	Solution 1
	Solution 2

	Failure to Log In to a Container
	Solution 1
	Solution 2

	Getting Technical Support

