Uploading images ... 43
Creating volumes from images ... 43
Preparing templates .. 44
Preparing Linux templates .. 44
Preparing Windows templates .. 45
Enabling logging for virtual machines ... 48
Managing volumes .. 50
Creating and deleting volumes ... 50
Attaching and detaching volumes .. 51
Resizing volumes ... 52
Changing the storage policy for volumes ... 52
Creating images from volumes ... 53
Cloning volumes .. 53
Managing volume snapshots ... 54
Managing virtual networks .. 57
Managing VPN connections ... 61
Creating VPN connections ... 62
Editing VPN connections .. 66
Restarting and deleting VPN connections ... 67
Managing virtual routers ... 68
Managing router interfaces ... 69
Managing static routes ... 72
Managing floating IP addresses .. 74
Managing load balancers .. 76
Managing balancing pools .. 80
Managing SSH keys ... 82
About this guide

This guide is intended for domain administrators and project members and explains how to manage project users and compute resources using the self-service panel.
Managing virtual machines

Each virtual machine (VM) is an independent system with an independent set of virtual hardware. Its main features are the following:

- A virtual machine resembles and works like a regular computer. It has its own virtual hardware. Software applications can run in virtual machines without any modifications or adjustment.
- Virtual machine configuration can be changed easily, for example, by adding new virtual disks or memory.
- Although virtual machines share physical hardware resources, they are fully isolated from each other (file system, processes, sysctl variables) and the compute node.
- A virtual machine can run any supported guest operating system.

The following table lists the current virtual machine configuration limits:

<table>
<thead>
<tr>
<th>Resource</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM</td>
<td>1 TiB</td>
</tr>
<tr>
<td>CPU</td>
<td>64 virtual CPUs</td>
</tr>
<tr>
<td>Storage</td>
<td>15 volumes, 512 TiB each</td>
</tr>
<tr>
<td>Network</td>
<td>15 NICs</td>
</tr>
</tbody>
</table>

Supported guest operating systems

The guest operating systems listed below have been tested and are supported in virtual machines.

Note

Only the x64 architecture is supported.

Windows

<table>
<thead>
<tr>
<th>Version</th>
<th>Edition</th>
<th>CPU hot plug support</th>
<th>RAM hot plug support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Server 2022</td>
<td>Essentials</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Windows Server 2022</td>
<td>Standard, Datacenter</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Windows Server 2019</td>
<td>Essentials</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Windows Server 2019</td>
<td>Standard, Datacenter</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Windows Server 2016</td>
<td>Essentials</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Windows Server 2016</td>
<td>Standard, Datacenter</td>
<td>Yes*</td>
<td>Yes</td>
</tr>
<tr>
<td>Windows Server Essentials, Standard, Datacenter</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
Windows

<table>
<thead>
<tr>
<th>Version</th>
<th>Edition</th>
<th>CPU hot plug support</th>
<th>RAM hot plug support</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012 R2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windows Server 2012</td>
<td>Standard, Datacenter</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Windows Server 2008 R2</td>
<td>Standard, Datacenter</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Windows 10</td>
<td>Home, Professional, Enterprise,</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Enterprise 2016 LTSB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windows 8.1</td>
<td>Home, Professional, Enterprise</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Windows 7</td>
<td>Home, Professional, Enterprise</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

* CPU hot plug does not work properly due to a Windows bug with a wrongly installed driver. To fix the issue, refer to this solution.

Linux

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Version</th>
<th>CPU hot plug support</th>
<th>RAM hot plug support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocky Linux</td>
<td>8.x</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Alma Linux</td>
<td>8.x</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CentOS</td>
<td>8.x, 7.x</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>6.x</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux</td>
<td>8.x, 7.x</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Debian</td>
<td>10.x, 9.x</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ubuntu</td>
<td>20.04.x, 18.04.x</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>16.04.x</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Creating virtual machines

Prerequisites

- You have a guest OS source prepared, as described in "Managing images" (p. 43).
- One or more compute networks are created by using the instructions in "Managing virtual networks" (p. 57).
- [Optional] Custom security groups are configured, as instructed in "Managing security groups" (p. 26).
- [Optional] An SSH key is added, as outlined in "Managing SSH keys" (p. 82). You can specify an SSH key only when creating VMs from a template or boot volume.
To create a virtual machine

1. On the Virtual machines screen, click Create virtual machine. A window will open where you will need to specify the VM parameters.
2. Specify a name for the new VM.
3. Select the VM boot media:
 - If you have an ISO image or a template
 a. Select Image in the Deploy from section, and then click Specify in the Image section.
 b. In the Images window, select the ISO image or template, and then click Done.
 - If you have a compute boot volume
 a. Select Volume in the Deploy from section, and then click Specify in the Volumes section.
 b. In the Volumes window, click Attach.
 c. In the Attach volume window, find and select the volume, and then click Attach.

If you attach more than one volume, the first attached volume becomes the boot volume, by default. To select another volume as bootable, place it first in the list by clicking the up arrow button next to it.

Note
If you select an image or volume with an assigned placement, the created VM will also inherit this placement.

After selecting the boot media, volumes required for this media to boot will be automatically added to the Volumes section.
4. Configure the VM disks:
 a. In the **Volumes** window, make sure the default boot volume is large enough to accommodate the guest OS. Otherwise, click the ellipsis icon next to it, and then **Edit**. Change the volume size and click **Save**.
 b. [Optional] Add more disks to the VM by creating or attaching volumes. To do this, click the pencil icon in the **Volumes** section, and then **Add or Attach** in the **Volumes** window.
 c. Select volumes that will be removed during the VM deletion. To do this, click the pencil icon in the **Volumes** section, click the ellipsis icon next to the needed volume, and then **Edit**. Enable **Delete on termination** and click **Save**.
 d. When you finish configuring the VM disks, click **Done**.

5. Choose the amount of RAM and CPU resources that will be allocated to the VM in the **Flavor** section. In the **Flavor** window, select a flavor, and then click **Done**.

Important
When choosing a flavor for a VM, ensure it satisfies the hardware requirements of the guest OS.

Note
To select a flavor with an assigned placement, you can filter flavors by placement. The VM created from such a flavor will also inherit this placement.

<table>
<thead>
<tr>
<th>Name</th>
<th>vCPU</th>
<th>Memory</th>
<th>Placement</th>
</tr>
</thead>
<tbody>
<tr>
<td>tiny</td>
<td>1</td>
<td>512 MiB</td>
<td>—</td>
</tr>
<tr>
<td>small</td>
<td>1</td>
<td>2 GiB</td>
<td>placement1</td>
</tr>
<tr>
<td>medium</td>
<td>2</td>
<td>4 GiB</td>
<td>placement1</td>
</tr>
<tr>
<td>large</td>
<td>4</td>
<td>8 GiB</td>
<td>—</td>
</tr>
<tr>
<td>xlarge</td>
<td>8</td>
<td>16 GiB</td>
<td>—</td>
</tr>
</tbody>
</table>

6. Add network interfaces to the VM in the **Networks** section:
 a. In the **Network interfaces** window, click **Add** to attach a network interface.
 b. In the **Add network interface** window, select a compute network to connect to, and then specify MAC address, IPv4 and/or IPv6 addresses, and security groups. By default, MAC and primary IP addresses are assigned automatically. To specify them manually, clear the **Assign automatically** check boxes, and enter the desired addresses. Optionally, assign additional IP
addresses to the network interface in the **Secondary IP addresses** section. Note that a secondary IPv6 address is not available for an IPv6 subnet that works in the SLAAC or DHCPv6 stateless mode.

Note
Secondary IP addresses, unlike the primary one, will not be automatically assigned to the network interface inside the virtual machine guest OS. You should assign them manually.

- If you selected a virtual network with enabled IP address management
 In this case, spoofing protection is enabled and the **default** security group is selected by default. This security group allows all incoming and outgoing traffic on all the VM ports. If required, you can select another security group or multiple security groups.
 To disable spoofing protection, clear all of the check boxes and turn off the toggle switch. Security groups cannot be configured with disabled spoofing protection.
- If you selected a virtual network with disabled IP address management
 In this case, spoofing protection is disabled by default and cannot be enabled. Security groups cannot be configured for such a network.
- If you selected a shared physical network
 In this case, spoofing protection cannot be configured by a self-service user. If you want to enable or disable spoofing protection, contact your system administrator.
After specifying the network interface parameters, click Add. The network interface will appear in the Network interfaces list.

c. [Optional] If required, edit IP addresses and security groups of newly added network interfaces. To do this, click the ellipsis icon, click Edit, and then set the parameters.

d. When you finish configuring the VM network interfaces, click Done.

7. [Optional] If you have chosen to boot from a template or volume, which has cloud-init and OpenSSH installed:

Important
As cloud images have no default password, you can access VMs deployed from them only by using the key authentication method with SSH.
• Add an SSH key to the VM, to be able to access it via SSH without a password. In the Select an SSH key window, select an SSH key and then click Done.

To be able to manage SSH keys, make sure the VM template has cloud-init installed.

• Add user data to customize the VM after launch, for example, change a user password. Write a cloud-config or shell script in the Customization script field or browse a file on your local server to load the script from.
To inject a script in a Windows VM, refer to the Cloudbase-Init documentation. For example, you can set a new password for the account using the following script:

```ps1
#ps1
net user <username> <new_password>
```

8. [Optional] Enable CPU and RAM hot plug for the VM in the Advanced options, to be able to change its flavor when the VM is running. You can also enable hot plug after the VM is created.

Note
If you do not see this option, CPU and RAM hot plug is disabled in your project. To enable it, contact your system administrator.

9. After configuring all of the VM parameters, click Deploy to create and boot the VM.

If you are deploying the VM from an ISO image, you need to install the guest OS inside the VM by using the built-in VNC console. Virtual machines created from a template or a boot volume already have a preinstalled guest OS.
Connecting to virtual machines

Prerequisites
- Virtual machines are created, as described in "Creating virtual machines" (p. 6).
- To be able to connect via SSH, the virtual machine must have cloud-init and OpenSSH installed.

To connect to a virtual machine via the VNC console
Select a VM, and then click **Console** on its right pane. The console will open in a separate browser window. In the console, you can send a key combination to a VM, take a screenshot of the console window, and download the console log (refer to "Troubleshooting virtual machines" (p. 24)).

To connect to a virtual machine via SSH
Specify the username and VM IP address in the SSH terminal:

```
# ssh <username>@<VM_IP_address>
```

Linux cloud images have the default login, depending on the operating system, for example, centos or ubuntu. To connect to a Windows VM, enter the username that you specified during Cloudbase-Init installation.

If you have deployed a VM without specifying an SSH key, you also need to enter a password to log in to the VM.

Managing virtual machine power state

Prerequisites
- Virtual machines are created, as described in "Creating virtual machines" (p. 6).

To manage the power state of a virtual machine
Click the virtual machine or the ellipsis button next to it to see the full list of actions available for the current state.

- To power up a VM, click **Run**.
- To gracefully shut down a running VM, click **Shut down**. The default shutdown timeout, after which a virtual machine will be powered off, is 10 minutes.
- To forcibly cut off power from a VM, click **Power off**.
- To softly reboot a running VM, click **Reboot**.
- To reboot a VM without the guest OS graceful shutdown, click **Hard reboot**.
- To save the current VM state to a file, click **Suspend**. This may prove useful, for example, if you need to restart the host but do not want to quit the applications currently running in the VM or restart its guest OS.
- To restore a VM from the suspended state, click **Resume**.
Attaching ISO images to virtual machines

You can attach ISO images to running or stopped virtual machines, for example, to install additional software inside them or to restore their operating system in the rescue mode. To attach an ISO image, you need to convert it to a volume, and then attach this volume to a VM.

When you finish installing software from an ISO volume, you can detach it without stopping the VM first.

To create a volume from an ISO image

1. On the Images screen, click the required ISO image.
2. On the image right pane, click Create volume.
3. In the Create volume from image window, specify a name for the volume, and then click Create.

To attach an ISO volume to a virtual machine

1. On the Virtual machines screen, click the required VM.
2. On the Overview tab, click the pencil icon in the Volumes field.
3. In the Volumes window, click Attach.
4. In the Attach volume window, select the created volume, and then click Attach. The attached volume will be marked as ISO.
5. In the Volumes window, click Done to save your changes.

The attached volume will appear inside the VM operating system.

To detach an ISO volume from a virtual machine

1. On the Virtual machines screen, click the required VM.
2. On the Overview tab, click the pencil icon in the Volumes field.
3. In the Volumes window, click the ellipsis icon next to the ISO volume, and then click Force detach.
4. Click Done to save your changes.

Reconfiguring virtual machines

Once you create a virtual machine, you can manage its CPU and RAM resources, as well as network interfaces and volumes.

Prerequisites

- Virtual machines are created, as described in "Creating virtual machines" (p. 6).

Changing virtual machine resources

You can change amount of CPU and RAM resources used by a virtual machine by applying another flavor to it. To be able to resize a running VM, you need to enable CPU and RAM hot plug for it first.
You can change the hot plug settings for both new and existing VMs.

A running virtual machine has a resize limit, which defines the maximum number of vCPUs and the maximum amount of RAM you can allocate to the VM. The resize limit on vCPUs is static and equal to 64 for all VMs. The resize limit on RAM, on the contrary, is dynamic and depends on the amount of RAM a running VM is currently using. This limit is updated on a VM startup, and its values are listed in the table below.

<table>
<thead>
<tr>
<th>Current RAM size, in GiB</th>
<th>RAM size limit, in GiB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>16</td>
</tr>
<tr>
<td>5-8</td>
<td>32</td>
</tr>
<tr>
<td>9-16</td>
<td>64</td>
</tr>
<tr>
<td>17-32</td>
<td>128</td>
</tr>
<tr>
<td>33-64</td>
<td>256</td>
</tr>
<tr>
<td>65-128</td>
<td>512</td>
</tr>
<tr>
<td>129-256</td>
<td>1024</td>
</tr>
</tbody>
</table>

For example, you can resize a running VM with a flavor that has 16 GiB to a flavor with 256 GiB in two iterations:

1. Resize the VM to a flavor with 64 GiB.
2. Restart the VM to update the RAM size limit.
3. Resize the VM to a flavor with 256 GiB.

Limitations

- You cannot change the flavor for shelved VMs. To resize such a VM, unshelve it first.
- You cannot decrease the number of CPUs and the amount of RAM for running VMs.
- [For all Linux guests] If a VM has no guest tools installed, new cores may be offline after CPU hot plugging.

You can verify which CPU cores are online by using the command:

```
# cat /sys/devices/system/cpu/online
```

To activate offline CPU cores, run:

```
# echo 1 > /sys/devices/system/cpu/cpu<cpu_number>/online
```

Prerequisites

- Before changing a flavor, ensure that the node hosting the VM has at least as much free CPU and RAM resources as the new VM size. For example, to resize a VM to the `large` flavor, the host must have at least 4 vCPUs and 8 GiB of RAM free.
- CPU and RAM hot plug is enabled by the system administrator.
• Before resizing a running VM, ensure that the guest operating system supports CPU and RAM hot plug (refer to "Supported guest operating systems" (p. 5)). Note that otherwise the guest operating system may become unstable after a resize. To increase CPU or RAM resources for such a guest operating system, you need to stop the virtual machine first.

• Before resizing a running VM, ensure that the guest operating system has the latest updates installed.

To enable or disable CPU and RAM hot plug for a virtual machine

1. On the Virtual machines screen, ensure that the required virtual machine in the "Shut down" state, and then click it.
2. On the Overview tab, click the pencil icon in the CPU and RAM hot plug field.

 Note
 If you do not see this field, CPU and RAM hot plug is disabled in your project. To enable it, contact your system administrator.

3. Select or clear the Enable hot plug check box, and then click the tick icon to save the changes.

With CPU and RAM hot plug enabled, you can change the flavor of a running VM.

To change the virtual machine flavor

1. On the Virtual machines screen, click the required virtual machine.
2. On the Overview tab, click the pencil icon in the Flavor field.
3. In the Flavor window, select a new flavor, and then click Done.

Configuring network interfaces of virtual machines

You can add new network interfaces to your virtual machines, edit IP addresses and security groups for the existing interfaces, and remove network interfaces by detaching them.

Limitations

• You cannot manage network interfaces of shelved VMs.
• A VM that is connected to a dual-stack network always receives an IPv6 address, if the IPv6 subnet is in the SLAAC or DHCPv6 stateless mode.

To attach a network interface to a virtual machine

1. On the Virtual machines screen, click the required virtual machine.
2. On the Overview tab, click Edit in the Network interfaces section.
3. In the Network interfaces window, click Add to attach a network interface.
4. In the Add network interface window, select a compute network to connect to, and then specify MAC address, IPv4 and/or IPv6 addresses, and security groups. By default, MAC and primary IP addresses are assigned automatically. To specify them manually, clear the Assign automatically check boxes, and enter the desired addresses. Optionally, assign additional IP addresses to the network interface in the Secondary IP addresses section. Note that a
secondary IPv6 address is not available for an IPv6 subnet that works in the SLAAC or DHCPv6 stateless mode.

Note
Secondary IP addresses, unlike the primary one, will not be automatically assigned to the network interface inside the virtual machine guest OS. You should assign them manually.

- If you selected a virtual network with enabled IP address management
 In this case, spoofing protection is enabled and the **default** security group is selected by default. This security group allows all incoming and outgoing traffic on all the VM ports. If required, you can select another security group or multiple security groups.
 To disable spoofing protection, clear all of the check boxes and turn off the toggle switch. Security groups cannot be configured with disabled spoofing protection.
- If you selected a virtual network with disabled IP address management
 In this case, spoofing protection is disabled by default and cannot be enabled. Security groups cannot be configured for such a network.
- If you selected a shared physical network
 In this case, spoofing protection cannot be configured by a self-service user. If you want to enable or disable spoofing protection, contact your system administrator.

After specifying the network interface parameters, click **Add**.

5. Click **Done** to finish editing VM network interfaces and save your changes.

To edit a network interface of a virtual machine

1. On the **Virtual machines** screen, click the required virtual machine.
2. On the **Overview** tab, click **Edit** in the **Network interfaces** section.
3. In the **Network interfaces** window, click the ellipsis button next to the interface you want to edit, and then click **Edit**.
4. In the **Edit network interface** window, modify the network interface parameters as follows:
 - Change the primary IP address. To update the address inside the VM guest OS, restart the network interface.
 - Add or remove secondary IP addresses.
 - Modify security groups assigned to the VM.
 After updating the required parameters, click **Save**.
5. Click **Done** to finish editing VM network interfaces and save your changes.

To detach a network interface from a virtual machine

1. On the **Virtual machines** screen, click the required virtual machine.
2. On the **Overview** tab, click **Edit** in the **Network interfaces** section.
3. In the **Network interfaces** window, click the ellipsis button next to the interface you want to detach, and then click **Remove**.
4. Click **Done** to finish editing VM network interfaces and save your changes.
Configuring virtual machine volumes

You can add new volumes to your virtual machines, attach existing volumes, and detach unneeded volumes from virtual machines.

Limitations

- You cannot change, detach, or delete the boot volume.
- You can only attach and detach non-boot volumes.
- You cannot manage volumes of shelved VMs.

Prerequisites

- To be able to use volumes attached to VMs, they must be initialized inside the guest OS by standard means.

To attach a volume to a virtual machine

1. On the Virtual machines screen, click the required virtual machine.
2. On the Overview tab, click the pencil icon in the Disks field.
3. In the Volumes window:
 - Click Attach to attach an existing volume, and then select the volume in the Attach volume window.
 - Click Add to create a new volume, and then specify the volume name, size, and storage policy. The created volume will be automatically added to the VM disks.
4. Click Done to finish editing VM disks and save your changes.

To detach a volume from a virtual machine

1. On the Virtual machines screen, click the required virtual machine.
2. On the Overview tab, click the pencil icon in the Disks field.
3. In the Volumes window:
 - Click Detach to detach a volume from a stopped virtual machine.
 - Click Force detach to detach a volume from a running virtual machine.

Warning!

There is a risk of data loss.

4. Click Done to finish editing VM disks and save your changes.

Monitoring virtual machines

Prerequisites

- Virtual machines are created, as described in "Creating virtual machines" (p. 6).

To monitor virtual machine’s CPU, storage, and network usage

Select the VM and open the Monitoring tab.
The default time interval for the charts is twelve hours. To zoom into a particular time interval, select the internal with the mouse; to reset zoom, double-click any chart.

The following performance charts are available:

CPU / RAM
- CPU and RAM usage by the VM.

Network
- Incoming and outgoing network traffic.

Storage read/write
- Amount of data read and written by the VM.

Read/write latency
- Read and write latency. Hovering the mouse cursor over a point on the chart, you can also see the average and maximum latency for that moment, as well as the 95 and 99 percentiles.

Note
Averaged values are calculated every five minutes.

Shelving virtual machines

You can unbind a stopped VM from the node it is hosted on and release its reserved resources such as CPU and RAM. A shelved VM remains bootable and retains its configuration, including the IP addresses.

Prerequisites

- Virtual machines are created, as described in "Creating virtual machines" (p. 6).

To shelve a virtual machine

1. Click the desired virtual machine.
2. If the VM is stopped, click **Shelve** on its right pane.
3. If the VM is running or suspended, click **Shut down** or **Power off** on its right pane, and then select **Shelve virtual machine** in the confirmation window.

To spawn a shelved VM on a node with enough resources to host it

1. Click a shelved virtual machine.
2. On the VM right pane, click **Unshelve**.

Rescuing virtual machines

If a VM experiences boot problems, you can send it to the rescue mode to access its boot volume. When a VM in the “Active” state is sent to the rescue mode, it is shut down softly first. Once the VM is in the rescue mode, you can connect to it via SSH or via the console. Its previous boot disk is now attached as a secondary one. You can mount the disk and repair it.
Limitations

- The rescue mode can use ISO images for booting both Linux and Windows virtual machines and QCOW2 images (templates) for booting Linux VMs. For instructions on making templates, refer to "Preparing templates" (p. 44).
- You can send a VM to the rescue mode only if its current status is “Active” or “Shut down”.
- There are only three actions available for the VM in the rescue mode: Console, Exit rescue mode, and Delete.
- If a rescue image has cloud-init installed, then the VM booted from it can be accessed with the same SSH key that was used for its creation.

Prerequisites

- Virtual machines are created, as described in "Creating virtual machines" (p. 6).

To put a virtual machine to the rescue mode

1. On the Virtual machines screen, click the required VM on the list.
2. On the VM right pane, click the ellipsis button on the toolbar. Then, click Enter rescue mode.
3. In the Enter rescue mode window, select an image to rescue the VM with. By default, the initial image used for creating the VM is selected. Click Enter.

The machine status changes to “Rescue”.

To return a virtual machine to normal operation

1. On the Virtual machines screen, click the required VM on the list.
2. On the VM right pane, click Exit rescue mode.
3. In the Exit rescue mode window, click Exit. The VM will be automatically rebooted.

The VM status changes to “Active” and it boots from the original root disk.
Note
If the VM status changes to “Error” when exiting the rescue mode, you can reset its status with the
Reset state action. The VM should then return to the “Rescue” status again.

To exit the rescue mode for a Windows VM

There might be an issue of exiting the rescue mode for a Windows VM. If in the rescue mode you set
the original system disk online, its ID becomes the same as that of the rescue disk. Then, when you
try to exit the rescue mode, the boot loader cannot find the proper boot disk. To resolve the ID
conflict, follow the steps:

1. With the VM in the rescue mode, open the Disk Management window and note the numbers of
 the original system disk (offline) and the rescue disk (online). Set the original system disk to
 Online.
2. To edit the boot configuration, enter the following command in the Command Prompt window:

   ```bash
   > bcdedit /store <the original system disk name>:\boot\bcd
   ```
3. Review the output and check that the rescue disk is the target for objects in the output
 (partition=<the rescue disk name>).
 If the objects do not point to drive C, fix it with the following commands:

   ```bash
   > bcdedit /store <the original system disk name>:\boot\bcd 
   /set {default} osdevice partition=<the rescue disk name>: 
   > bcdedit /store <the original system disk name>:\boot\bcd 
   /set {default} device partition=<the rescue disk name>: 
   > bcdedit /store <the original system disk name>:\boot\bcd 
   /set {bootmgr} device partition=<the rescue disk name>: 
   > bcdedit /store <the original system disk name>:\boot\bcd 
   /set {memdiag} device partition=<the rescue disk name>: 
   ```
4. To view the available disks, enter the following commands in the command line:

   ```bash
   > DISKPART
   > LIST DISK
   ```
 Match the disk number and name to those displayed in the Disk Management window.
5. To get the ID of the rescue disk, run the following commands:

   ```bash
   > SELECT DISK <the rescue disk number>
   > UNIQUEID DISK
   ```
 Record the disk ID, you will need it later.
6. Change this ID by using the following command:

   ```bash
   > UNIQUEID DISK id=<any hex value of 8 characters>
   ```
 Make sure that the value has changed with the UNIQUEID DISK command.
7. Assign the ID that you recorded previously to the original system disk:

 - SELECT DISK <the original system disk number>
 - UNIQUEID DISK id=<the recorded disk ID>

Make sure that the value has changed with the UNIQUEID DISK command.

You should now be able to exit the rescue mode.

Managing guest tools

This section explains how to install and uninstall the guest tools. This functionality is required for creating consistent snapshots of a running VM's disks.

Limitations

- Guest tools rely on the QEMU guest agent that is installed alongside the tools. The agent service must be running for the tools to work.

Prerequisites

- Virtual machines are created, as described in "Creating virtual machines" (p. 6).
- The virtual machine has a guest operating system installed.

Installing guest tools

1. Create a compute volume from the vz-guest-tools-win or vz-guest-tools-lin image, depending on the VM operating system:

 Note

 If you do not have these images in your project, obtain them from the official repository and upload them to your project, as described in "Uploading images" (p. 43).

 a. On the Images screen, click the vz-guest-tools-win or vz-guest-tools-lin image.
 b. On the image right pane, click Create volume.
 c. In the Create volume from image window, specify a name for the volume, and then click Create.

2. Attach the volume with the guest tools to the virtual machine:
 a. On the Virtual machines screen, click the required VM.
 b. On the VM right pane, click the pencil icon in the Volumes field.
 c. In the Volumes window, click Attach.
 d. In the Attach volume window, select the created volume with the guest tools, and then click Attach. The attached volume will be marked as ISO.
 e. In the Volumes window, click Done, to save your changes.

3. Log in to the virtual machine.

4. Inside the VM, do the following:
• Inside a Windows VM, go to the mounted optical drive in Explorer and install the guest tools by running setup.exe. After the installation is complete, restart the VM.
• Inside a Linux VM, create a mount point for the optical drive with the guest tools image and run the installer:

```bash
# mkdir /mnt/cdrom
# mount <path_to_guest_tools_iso> /mnt/cdrom
# bash /mnt/cdrom/install
```

Uninstalling guest tools

If you find out that the guest tools are incompatible with some software inside a virtual machine, you can uninstall them by doing the following:

• Inside a Windows VM:
 1. Remove the QEMU device drivers from the device manager.

 Important
 Do not remove the VirtIO/SCSI hard disk driver and NetKVM network driver. Without the former, the VM will not boot; without the latter, the VM will lose network connectivity.

 2. Uninstall the QEMU guest agent and guest tools from the list of installed applications.
 3. Stop and delete **Guest Tools Monitor**:

    ```bash
    > sc stop VzGuestToolsMonitor
    > sc delete VzGuestToolsMonitor
    ```

 4. Unregister **Guest Tools Monitor** from **Event Log**:

    ```bash
    > reg delete HKLM\SYSTEM\CurrentControlSet\services\eventlog\Application\VzGuestToolsMonitor
    ```

 5. Delete the autorun registry key for **RebootNotifier**:

    ```bash
    > reg delete HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run /v \VzRebootNotifier
    ```

 6. Delete the C:\Program Files\Qemu-ga\directory.

 If VzGuestToolsMonitor.exe is locked, close all the Event Viewer windows. If it remains locked, restart the eventlog service:

    ```bash
    > sc stop eventlog
    > sc start eventlog
    ```

After removing the guest tools, restart the virtual machine.
• Inside a Linux VM:
1. Remove the packages:
 a. On RPM-based systems (CentOS and other):

      ```
      # yum remove dkms-vzvirtio_balloon prl_nettool qemu-guest-agent-vz \
      vz-guest-udev
      ```

 b. On DEB-based systems (Debian and Ubuntu):

      ```
      # apt-get remove vzvirtio-balloon-dkms prl-nettool qemu-guest-agent-vz \
      vz-guest-udev
      ```

 If any of the packages listed above are not installed on your system, the command will fail. In this case, exclude these packages from the command and run it again.

2. Remove the files:

   ```
   # rm -f /usr/bin/prl_backup /usr/share/qemu-ga/VERSION \
   /usr/bin/install-tools \
   /etc/udev/rules.d/90-guest_iso.rules /usr/local/bin/fstrim-static \
   /etc/cron.weekly/fstrim
   ```

3. Reload the udev rules:

   ```
   # udevadm control --reload
   ```

 After removing guest tools, restart the virtual machine.

Troubleshooting virtual machines

If a virtual machine fails to deploy

Review the error message on the VM right pane. One of the possible root causes is that compute nodes lack free RAM or CPU resources to host the VM.

If a virtual machine is stuck in a failed or transitional state

Reset the VM to its last stable state: active, shut down or shelved:

1. Click the stuck VM.
2. On the VM right pane, click **Reset state**.

If a virtual machine fails to boot

Examine the VM console log by clicking **Download console log** on the VM right pane. The log will contain log messages only if logging is enabled inside the VM (refer to "Enabling logging for virtual machines" (p. 48)).

Deleting virtual machines

Limitations
• A VM is removed along with its disks that have the **Delete on termination** option enabled during the VM deployment.

Prerequisites

• Virtual machines are created, as described in "Creating virtual machines" (p. 6).

To remove one virtual machine

1. Click the ellipsis button next to a VM you want to delete, and then click **Delete**.
2. Click **Delete** in the confirmation window.

To remove multiple virtual machines

1. Select the check boxes next to VMs you want to delete.
2. Over the VM list, click **Delete**.
3. Click **Delete** in the confirmation window.
Managing security groups

A security group is a set of network access rules that control incoming and outgoing traffic to virtual machines assigned to this group. With security group rules, you can specify the type and direction of traffic that is allowed access to a virtual interface port. Traffic that does not satisfy any rule is dropped.

For each project, the default security group is automatically created in the compute cluster. This group allows all traffic on all ports for all protocols and cannot be deleted. When you attach a network interface to a VM, the interface is associated with the default security group, unless you explicitly select a custom security group.

You can assign one or more security groups to both new and existing virtual machines. When you add rules to security groups or remove them, the changes are enforced at runtime.

Limitations
- You can manage only IPv4 security group rules.

Creating and deleting security groups

Limitations
- You cannot delete a security group if it is assigned to a VM.

To create a security group
1. On the Security groups screen, click Add security group.
2. In the Add security group window, specify a name and description for the group, and then click Add.

Add security group

Name
mygroup

Description (optional)
A custom security group

By default, the new security group will deny all incoming traffic and allow only outgoing traffic to assigned virtual machines.
To delete a security group

1. On the Security groups screen, click the required security group.
2. On the group right pane, click Delete.
3. Click Delete in the confirmation window.

Managing security group rules

You can modify security groups by adding and removing rules. Editing rules is not available. If you need to change the existing rule, remove it and recreate with the required parameters.

Prerequisites

- You have a security group created, as described in "Creating and deleting security groups" (p. 26).

To add a rule to a security group

1. On the Security groups screen, click the security group to add a rule to.
2. On the group right pane, click Add in the Inbound or Outbound section to create a rule for incoming or outgoing traffic.
3. Specify the rule parameters:
 a. Select a protocol from the list or enter a number from 0 to 255.
 b. Enter a single port or a port range. Some protocols already have a predefined port range. For example, the port for SSH is 22.
 c. Select a predefined subnet CIDR or an existing security group.

4. Click the check mark to save the changes.

As soon as the rule is created, it is applied to all of the virtual machines assigned to the security group.

To remove a rule from a security group

1. On the Security groups screen, click the required security group.
2. On the group right pane, click the bin icon next to a rule you want to remove.

As soon as the rule is removed, this change is applied to all of the virtual machines assigned to the security group.

Changing security group assignment

When you create a VM, you select security groups for the VM network interfaces. You can also change assigned security groups later.

Limitations
• You cannot configure security groups if spoofing protection is disabled or IP address management is disabled for the selected network.

To view virtual machines assigned to a security group

1. On the Security groups screen, click the required security group.
2. On the group right pane, navigate to the Assigned VMs tab. All the assigned virtual machines will be shown along with their status.

You can click the VM name to go to the VM Overview pane and change the security group assignment for its network interfaces.

To assign a security group to a virtual machine

1. On the Virtual machines screen, click the required virtual machine.
2. On the Overview tab, click the pencil icon in the Networks section.
3. Click the ellipsis icon next to the network interface to assign a security group to, and then click Edit.
4. In the Edit network interface window, go to the Security groups tab.
5. Select one or more security groups from the drop-down list, and then click Save.

The rules from chosen security groups will be applied at runtime.
Managing Kubernetes clusters

Self-service users can deploy ready-to-use Kubernetes clusters with persistent storage for managing containerized applications.

A Kubernetes cluster includes the following components:

<table>
<thead>
<tr>
<th>Component</th>
<th>Name and version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underlying OS</td>
<td>Fedora 34 CoreOS</td>
</tr>
<tr>
<td>Container runtime</td>
<td>Docker 20.10.6</td>
</tr>
<tr>
<td>Network plugin</td>
<td>Flannel with VXLAN</td>
</tr>
</tbody>
</table>

Limitations

- Kubernetes versions 1.15.x, 1.18.x, and 1.19.x are no longer supported. Kubernetes clusters created with these versions are marked with the **Deprecated** tag.
- Kubernetes cluster certificates are issued for five years. To renew the certificates, use the `openstack coe ca rotate` command, as described in the OpenStack documentation.

Creating and deleting Kubernetes clusters

Prerequisites

- The Kubernetes-as-a-service component is installed by a system administrator. It can be deployed along with the compute cluster or later.
- You have a network that will interconnect the Kubernetes master and worker nodes. It can be either a shared physical network or a virtual network linked to a physical one via a virtual router. The virtual network needs to have a gateway and a DNS server specified.
- An SSH key is added. It will be installed on both the master and worker nodes.
- You have enough resources for all of the Kubernetes nodes, taking their flavors into account.
- It is also required that the network where you create a Kubernetes cluster does not overlap with these default networks:
 - 10.100.0.0/24—Used for pod-level networking
 - 10.254.0.0/16—Used for allocating Kubernetes cluster IP addresses

To create a Kubernetes cluster

1. Go to the **Kubernetes clusters** screen, and then click **Create** on the right. A window will open where you can set your cluster parameters
2. In the **Cluster** section, select a Kubernetes version, enter a cluster name, and select an SSH key.
3. In the **Network** section, select a network that will interconnect the Kubernetes nodes in the cluster. If you select a virtual network, decide whether you need access to your Kubernetes cluster via a floating IP address:

- If you select **None**, you will not have access to the Kubernetes API.
- If you select **For Kubernetes API**, a floating IP address will be assigned to the master node or to the load balancer if the master node is highly available.
- If you select **For Kubernetes API and nodes**, floating IP addresses will be additionally assigned to all of the Kubernetes nodes (masters and workers).

4. In the **Master node** section, select a flavor, and then choose whether or not to enable high availability for the master node. If you enable high availability, three master node instances will be created. They will work in the Active/Active mode. For production clusters, it is strongly recommended to use a flavor with at least 2 vCPUs and 8 GiB of RAM.
5. In the **Container volume** section, select a storage policy, and then enter size for volumes on both master and worker nodes.

<table>
<thead>
<tr>
<th>Container volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>These parameters apply to both master and worker nodes.</td>
</tr>
<tr>
<td>Storage policy: default</td>
</tr>
</tbody>
</table>

6. In the **Default worker group** section, set a number of workers to create, and then select a flavor for each worker.

<table>
<thead>
<tr>
<th>Default worker group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of workers: 3</td>
</tr>
<tr>
<td>Flavor: small — 1 vCPU, 2 GiB RAM</td>
</tr>
</tbody>
</table>

7. Click **Create**.

Creation of the Kubernetes cluster will start. The master and worker nodes will appear on the **Virtual machines** screen, while their volumes will show up on the **Volumes** screen.

After the cluster is ready, click **Kubernetes access** for instructions on how you can access the dashboard.

To delete a Kubernetes cluster

Click the required Kubernetes cluster on the **Kubernetes clusters** screen and click **Delete**. The master and worker VMs will be deleted along with their volumes.

Managing Kubernetes worker groups

To meet system requirements of applications running in Kubernetes clusters, you can have worker nodes with different number of CPUs and amount of RAM. Creating workers with different flavors is possible by using worker groups.

When creating a Kubernetes cluster, you can specify the configuration of only one worker group, the default worker group. After the cluster is created, add as many worker groups as you need. If required, you can also edit the number of workers in a group later.

Limitations

- Worker groups are not available for Kubernetes version 1.15.x.
- Only the user who created a Kubernetes cluster can edit its worker groups.
- The default worker group cannot be deleted.
Prerequisites

- A Kubernetes cluster is created, as described in "Creating and deleting Kubernetes clusters" (p. 29).

To add a worker group

1. On the Kubernetes clusters screen, click a Kubernetes cluster.
2. On the cluster right pane, navigate to the Groups tab.
3. In the Workers section, click Add.
4. In the Add worker group window, set a number of workers to create, select a flavor for each worker, and then specify a name for the group. Then, click Add.

When the worker group is created, you can assign pods to these worker nodes, as explained in "Assigning Kubernetes pods to specific nodes" (p. 41).

To edit the number of workers in a group

1. On the Kubernetes cluster right pane, navigate to the Groups tab.
2. In the Workers section, click the pencil icon for the default worker group or the ellipsis icon for all other groups, and then select Edit.
3. In the Edit worker group window, change the number of workers, and then click Save.

To delete a worker group

Click the ellipsis icon next to the required worker group, and then select Delete. The worker group will be deleted along with all of its workers. After the deletion, the worker group data will be lost.
Updating Kubernetes clusters

When a new Kubernetes version becomes available, you can update your Kubernetes cluster to it. An update is non-disruptive for Kubernetes worker nodes, which means that these nodes are updated one by one, with the data availability unaffected. The Kubernetes API will be unavailable during an update, unless high availability is enabled for the master node.

Limitations

- You cannot update Kubernetes clusters with version 1.15.x to newer versions.

Prerequisites

- A Kubernetes cluster is created, as described in "Creating and deleting Kubernetes clusters" (p. 29).

To update a Kubernetes cluster

1. Click a Kubernetes cluster that is marked with the **Update available** tag.
2. On the Kubernetes cluster pane, click **Update** in the **Kubernetes version** field.
3. In the **Update** window, select a Kubernetes version to update to and follow the provided link to read about API resources that are deprecated or obsoleted in the selected version. Then, click **Update**.
4. In the confirmation window, click **Confirm**. The update process will start.

Warning!

Do not manage Kubernetes virtual machines during the update as it may lead to disruption of the update process and cluster inoperability.

Using persistent volumes for Kubernetes pods

Kubernetes allows using compute volumes as persistent storage for pods. Persistent volumes (PV) exist independently of pods, meaning that such a volume persists after the pod it is mounted to is deleted. This PV can be mounted to other pods for accessing data stored on it. You can provision PVs dynamically, without having to create them manually, or statically, using volumes that exist in the compute cluster.

Creating storage classes

In Virtuozzo Hybrid Cloud, storage classes map to compute storage policies defined in the admin panel. Creating a storage class is required for all storage operations in a Kubernetes cluster.

To create a storage class

Click + **Create** on the Kubernetes dashboard and specify a YAML file that defines this object. For example:
This manifest describes the storage class `mysc` with the storage policy `default`. The storage policy must exist in the compute cluster and be specified in the storage quotas to the current project.

Dynamically provisioning persistent volumes

Persistent volumes can be dynamically provisioned via persistent volume claims (PVC). A PVC requests for a PV of a specific storage class, access mode, and size. If a suitable PV exists in the cluster, it is bound to the claim. If suitable PVs do not exist but can be provisioned, a new volume is created and bound to the claim. Kubernetes uses a PVC to obtain the PV backing it and mounts it to the pod.

Prerequisites

- A pod and the persistent volume claim it uses must exist in the same namespace.

To dynamically provision a PV to a pod

1. Access the Kubernetes cluster via the dashboard. Click **Kubernetes access** for instructions.
2. On the Kubernetes dashboard, create a storage class, as described in "Creating storage classes" (p. 33).
3. Create a persistent volume claim. To do it, click **Create** and specify the following YAML file:

   ```yaml
   apiVersion: v1
   kind: PersistentVolumeClaim
   metadata:
     name: mypvc
   spec:
     accessModes:
     - ReadWriteOnce
     resources:
       requests:
         storage: 10Gi
     storageClassName: mysc
   ```

 This manifest specifies the persistent volume claim `mypvc` that requests from the storage class `mysc` a volume of at least 10 GiB that can be mounted in the read/write mode by a single node. Creation of the PVC triggers dynamic provisioning of a persistent volume that satisfies the claim’s requirements. Kubernetes then binds it to the claim.
4. Create a pod and specify the PVC as its volume. To do it, click + **Create** and enter the following YAML file:

```yaml
apiVersion: v1
kind: Pod
metadata:
  name: nginx
spec:
  containers:
  - image: nginx
    imagePullPolicy: IfNotPresent
    name: nginx
    ports:
    - containerPort: 80
      protocol: TCP
    volumeMounts:
    - mountPath: /var/lib/www/html
      name: mydisk
  volumes:
  - name: mydisk
    persistentVolumeClaim:
      claimName: mypvc
      readOnly: false
```

This configuration file describes the pod **nginx** that uses the persistent volume claim **mypvc**. The persistent volume bound to the claim will be accessible at `/var/lib/www/html` inside the `nginx` container.
Statically provisioning persistent volumes

You can mount existing compute volumes to pods using static provisioning of persistent volumes.

To mount a compute volume

1. In the self-service panel, obtain the ID of the desired volume.

```
myvolume
```

2. Access the Kubernetes cluster via the dashboard. Click Kubernetes access for instructions.

3. On the Kubernetes dashboard, create a storage class, as described in "Creating storage classes" (p. 33).

4. Create a persistent volume. To do it, click + Create and specify the following YAML file:

```yaml
apiVersion: v1
kind: PersistentVolume
metadata:
  annotations:
    pv.kubernetes.io/provisioned-by: cinder.csi.openstack.org
  name: mypv
spec:
  accessModes:
  - ReadWriteOnce
  capacity:
    storage: 10Gi
  csi:
    driver: cinder.csi.openstack.org
    fsType: ext4
    volumeHandle: c5850e42-4f9d-42b5-9bee-8809dedae424
  persistentVolumeReclaimPolicy: Delete
  storageClassName: mysc
```
This manifest specifies the persistent volume `mypv` from the storage class `mysc` that has 10 GiB of storage and access mode that allows it to be mounted in the read/write mode by a single node. The PV `mypv` uses the compute volume with the ID c5850e42-4f9d-42b5-9bee-8809dedae424 as backing storage.

5. Create a persistent volume claim. Before you define the PVC, make sure the PV is created and has the status “Available”. The existing PV must meet the claim’s requirements to storage size, access mode and storage class. Click + Create and specify the following YAML file:

```yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: mypvc
spec:
  accessModes:
  - ReadWriteOnce
  resources:
    requests:
      storage: 10Gi
  storageClassName: msc
```

Once the persistent volume claim `mypvc` is created, the volume `mypv` is bound to it.

6. Create a pod and specify the PVC as its volume. Use the example from Step 4 in "Dynamically provisioning persistent volumes" (p. 34).

 In the self-service panel, the compute volume will be mounted to the virtual machine running the Kubernetes pod.
Making Kubernetes deployments highly available

If a node that hosts a Kubernetes pod fails or becomes unreachable over the network, the pod is stuck in a transitional state. In this case, the pod's persistent volumes are not automatically detached, and it prevents the pod redeployment on another worker node. To make your Kubernetes applications highly available, you need to enforce the pod termination in the event of node failure by adding rules to the pod deployment.

To terminate a stuck pod

Add the following lines to the `spec` section of the deployment configuration file:

```yaml
terminationGracePeriodSeconds: 0
tolerations:
- effect: NoExecute
  key: node.kubernetes.io/unreachable
  operator: Exists
  toleranceSeconds: 2
- effect: NoExecute
  key: node.kubernetes.io/not-ready
  operator: Exists
  toleranceSeconds: 2
```

If the node's state changes to "NotReady" or "Unreachable", the pod will be automatically terminated in 2 seconds.

The entire YAML file of a deployment may look as follows:
apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 replicas: 1
 selector:
 matchLabels:
 app: nginx
template:
 metadata:
 labels:
 app: nginx
 spec:
 terminationGracePeriodSeconds: 0
 tolerations:
 - effect: NoExecute
 key: node.kubernetes.io/unreachable
 operator: Exists
 toleranceSeconds: 2
 - effect: NoExecute
 key: node.kubernetes.io/not-ready
 operator: Exists
 toleranceSeconds: 2
 containers:
 - image: nginx
 imagePullPolicy: IfNotPresent
 name: nginx
 ports:
 - containerPort: 80
 protocol: TCP
 volumeMounts:
 - mountPath: /var/lib/www/html
 name: mydisk
 volumes:
 - name: mydisk
 persistentVolumeClaim:
 claimName: mypvc

The manifest above describes the deployment nginx with one pod that uses the persistent volume claim mypvc and will be automatically terminated in 2 seconds in the event of node failure.

Creating external load balancers in Kubernetes

In Kubernetes, you can create a service with an external load balancer that provides access to it from public networks. The load balancer will receive a publicly accessible IP address and route incoming requests to the correct port on the Kubernetes cluster nodes.

To create a service with an external load balancer
1. Access the Kubernetes cluster via the dashboard. Click **Kubernetes access** for instructions.

2. On the Kubernetes dashboard, create a deployment and service of the **LoadBalancer** type. To do it, click **+ Create** and specify a YAML file that defines these objects. For example:
 - If you have deployed the Kubernetes cluster in a shared physical network, specify the following manifest:

     ```yaml
     apiVersion: apps/v1
     kind: Deployment
     metadata:
       name: nginx
     spec:
       replicas: 2
       selector:
         matchLabels:
           app: nginx
     template:
       metadata:
         labels:
           app: nginx
       spec:
         containers:
           - name: nginx
             image: nginx
             ports:
               - containerPort: 80

     ---
     kind: Service
     apiVersion: v1
     metadata:
       name: load-balancer
     annotations:
       service.beta.kubernetes.io/openstack-internal-load-balancer: "true"
     spec:
       selector:
         app: nginx
       type: LoadBalancer
       ports:
         - port: 80
           targetPort: 80
           protocol: TCP
     
     The manifest above describes the deployment nginx with a replica set of two pods and the service load-balancer with the LoadBalancer type. The annotation used for the service indicates that the load balancer will be internal.
     Once the load balancer is created, it will be allocated an IP address from the shared physical network and can be accessed at this external endpoint.
• If you have deployed the Kubernetes cluster in a virtual network linked to a physical one via a virtual router, you can use the YAML file above without the annotations section for the load-balancer service. The created load balancer will receive a floating IP address from the physical network and can be accessed at this external endpoint.

The load balancer will also appear in the self-service panel, where you can monitor its performance and health. For example:

Assigning Kubernetes pods to specific nodes

By using worker groups, you can assign a pod in Kubernetes to specific nodes. When you create a custom worker group, its nodes are added a label with the group name. If you want your pod to be scheduled on a node from a specific worker group, add the node selector section with the node label to the pod’s configuration file.

To create a pod that will be scheduled on a specific node

Click + Create on the Kubernetes dashboard and specify a YAML file that defines this object. For example:

```yaml
apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 env: test
spec:
 containers:
 - name: nginx
 image: nginx
 imagePullPolicy: IfNotPresent
 nodeSelector:
 magnum.openstack.org/nodegroup: mygroup
```
This manifest describes the pod `nginx` that will be assigned to a node from the node group `mygroup`.

When the pod is created, check that the hosting node belongs to the specified worker group.

Pods							
Name: nginx	Namespac Labels: default	Node: kube1-mygroup-vogeh53o-node-1	Status: Running	Restarts: 0	CPU Usage (cores): -	Memory Usage (bytes): -	Created: a minute ago

Copyright © 2016-2022 Virtuozzo International GmbH
Managing images

Virtuozzo Hybrid Cloud allows you to upload ISO images and templates that can be used to create VM volumes:

- An ISO image is a typical OS distribution that needs to be installed on disk. You can upload an ISO image to the compute cluster.
- A template is a ready boot volume in the QCOW2 format with an installed operating system and applications. Many OS vendors offer templates of their operating systems under the name “cloud images”. You can upload a cloud image from the OS official repository or prepare your own template in the compute cluster.

Prerequisites

- Knowledge of the supported guest operating systems listed in “Supported guest operating systems” (p. 5).

Uploading images

To upload an image

1. On the Images screen, click Add image.
2. In the Add image window, do the following:
   a. Click Browse and select a file in one of the supported formats: .iso, .img, .qcow2, .raw.
   b. Specify an image name to be shown in the admin panel.
   c. Select the correct OS type from the drop-down list.

   Important
   The OS type affects VM parameters such as hypervisor settings. VMs created from an image with an incorrect OS type may not work correctly, for example, they may crash.

3. Click Add to start uploading the image. The upload progress will be shown in the bottom right corner.

You can hide the pop-up window without interrupting the upload process. The upload progress will be available in the notification center.

Creating volumes from images

You can create volumes from both ISO images and templates.

To make a volume from an image

1. Go to the Images screen, and then click the required image.
2. On the image panel, click Create volume.
3. In the Create volume window, specify the volume name, size, and select a storage policy.
4. Click Create.

The new volume will appear on the Volumes screen.

Preparing templates

You may need to create a template in these cases:

- To rescue a virtual machine
- To create a VM accessible via SSH
- To create a VM customizable with user data

**Preparation overview**

1. Install cloud-init and OpenSSH Server in the virtual machine.
2. [Optional] Enable logging for virtual machines that will be created from the template.
3. Convert the VM boot volume to the template, as described in "Creating images from volumes" (p. 53).

Preparing Linux templates

As all Linux guests have OpenSSH Server preinstalled by default, you only need to make sure a Linux template has cloud-init installed.
The easiest way to get a Linux template with cloud-init installed is to obtain it from its official repository. You can also create a Linux template from an existing boot volume.

Preparing Windows templates

Windows guests have neither Cloudbase-Init nor OpenSSH Server preinstalled by default. You need to install and configure them manually.

To install Cloudbase-Init and OpenSSH Server inside a Windows virtual machine

1. Log in to a Windows VM.
2. Create a new administrator account that will be used for SSH connections and log in with it.
3. To install and configure OpenSSH Server:
   a. Run Windows PowerShell with administrator privileges and set the execution policy to unrestricted to be able to run scripts:
   ```bash
 > Set-ExecutionPolicy Unrestricted
   ```
   b. Download OpenSSH Server (for example, from the GitHub repository), extract the archive into the C:\Program Files directory, and then install it by running:
   ```bash
 > & 'C:\Program Files\OpenSSH-Win64\install-sshd.ps1'
   ```
   c. Start the sshd service and set its startup type to “Automatic”:
   ```bash
 > net start sshd
 > Set-Service sshd -StartupType Automatic
   ```
   d. Open TCP port 22 for the OpenSSH service in the Windows Firewall:
      • On Windows 8.1, Windows Server 2012, and newer versions, run
        ```bash
 > New-NetFirewallRule -Protocol TCP -LocalPort 22 -Direction Inbound -Action Allow -DisplayName OpenSSH
        ```
      • On Windows 7, Windows Server 2008, and Windows Server 2008 R2, run
        ```bash
 > netsh advfirewall firewall add rule name=sshd dir=in action=allow protocol=TCP localport=22
        ```
   e. Open the C:\ProgramData\ssh\sshd_config file:
      ```bash
 > notepad 'C:\ProgramData\ssh\sshd_config'
      ```
      Comment out the following lines at the end of the file:
      ```bash
 #Match Group administrators
 #AuthorizedKeysFile __PROGRAMDATA__/ssh/administrators Authorized keys
      ```
      Save the changes.
f. Create the .ssh directory in C:\Users\<current_user> and an empty authorized_keys file inside it:

```bash
> cd C:\Users\<current_user>
> mkdir .ssh
> notepad .\ssh\authorized_keys
```

Remove the .txt extension from the created file:

```bash
> move .\ssh\authorized_keys.txt .\ssh\authorized_keys
```

g. Modify the permissions for the created file to disable inheritance:

```bash
> icacls .\ssh\authorized_keys /inheritance:r
```

4. Download Cloudbase-Init (for example, from the [official site](#)), launch the installation, and then follow the on-screen instructions:

a. In the **Configuration options** window, enter the current username in the **Username** field:

   **Important**
   The user account password will be reset on the next VM startup. You will be able to log in with this account by using the key authentication method or you can set a new password with a customization script.

   ![Cloudbase-Init 0.9.11 Setup](#)

   **Configuration options**
   Options for guest startup initialization

   ```plaintext
 Username:
 user

 Use metadata password

 User's local groups (comma separated list):
 Administrators

 Serial port for logging:

 Run Cloudbase-Init service as LocalSystem
   ```
b. When the installation is complete, do not run Sysprep and click Finish:

![Cloudbase-Init 0.9.11 Setup](image)

Completed the Cloudbase-Init 0.9.11 Setup Wizard

Click the Finish button to exit the Setup Wizard.

- Run Sysprep to create a generalized image. This is necessary if you plan to duplicate this instance, for example by creating a Glance image.
- Shutdown when Sysprep terminates.

![Cloudbase-Init 0.9.11 Setup](image)

c. Run Windows PowerShell with administrator privileges and open the file `C:\Program Files\Cloudbase Solutions\Cloudbase-Init\conf\cloudbase-init.conf`:

```
> notepad 'C:\Program Files\Cloudbase Solutions\Cloudbase-Init\conf\cloudbase-init.conf'
```

Add `metadata_services` and plugins on two lines:

```plaintext
metadata_services=
cloudbaseinit.metadata.services.configdrive.ConfigDriveService,\
cloudbaseinit.metadata.services.httbservice.HttpService,\
plugins=cloudbaseinit.plugins.common.mtu.MTUPlugin,\
cloudbaseinit.plugins.windows.ntpcclient.NTPClientPlugin,\
cloudbaseinit.plugins.common.sethostname.SetHostNamePlugin,\
cloudbaseinit.plugins.windows.createuser.CreateUserPlugin,\
cloudbaseinit.plugins.common.networkconfig.NetworkConfigPlugin,\
cloudbaseinit.plugins.windows.licensing.WindowsLicensingPlugin,\
cloudbaseinit.plugins.common.sshpublickeys.SetUserSSHPublicKeysPlugin,\
cloudbaseinit.plugins.windows.extendvolumes.ExtendVolumesPlugin,\
cloudbaseinit.plugins.common.setuserpassword.SetUserPasswordPlugin,\
cloudbaseinit.plugins.commonuserdata.UserDataPlugin,\
cloudbaseinit.plugins.windows.winrmlistener.ConfigWinRMListenerPlugin,\
cloudbaseinit.plugins.windows.winrmcertificateauth.ConfigWinRMCertificateAuthPlugin,\
cloudbaseinit.plugins.windows.windows.certificates '\\ConfigWinRMListenerPlugin,\
clüdbaseinit.plugins.common.localscripts.LocalScriptsPlugin
```
Note
Make sure to remove all backslashes in the lines above.

Save the changes.

Enabling logging for virtual machines

The console log of a virtual machine can be used for troubleshooting boot issues. The log contains messages only if logging is enabled inside the VM, otherwise the log is empty.

The logging can be turned on by enabling the TTY1 and TTYS0 logging levels in Linux VMs and Emergency Management Services (EMS) console redirection in Windows VMs. You may also enable driver status logging in Windows VMs, to see the list of loaded drivers. This can be useful for troubleshooting a faulty driver or long boot process.

To enable TTY1 and TTYS0 logging in Linux virtual machines

1. Add the line GRUB_CMDLINE_LINUX_DEFAULT="console=tty1 console=ttyS0" to the file /etc/default/grub.
2. Depending on the boot loader, run either

   # grub-mkconfig -o /boot/grub/grub.cfg

   or

   # grub2-mkconfig -o /boot/grub2/grub.cfg

3. Reboot the VM.

To enable EMS console redirection in Windows virtual machines

1. Start Windows PowerShell by using administrator privileges.
2. In the PowerShell console, set the COM port and baud rate for EMS console redirection. As Windows VMs have only the COM1 port with the transmission rate of 9600 bps, run:

   bcdedit /emssettings EMSPORT:1

3. Enable EMS for the current boot entry:

   bcdedit /ems on

To enable driver status logging in Windows virtual machines

1. Start System Configuration by using administrator privileges.
2. In the System Configuration windows, open the Boot tab, and select the check boxes OS boot
information and Make all boot settings permanent.

3. Confirm the changes and restart the system.
Managing volumes

A volume in Virtuozzo Hybrid Cloud is a virtual disk drive that can be attached to a virtual machine. The integrity of data in volumes is protected by the redundancy mode specified in the storage policy.

Creating and deleting volumes

Limitations
- A volume is removed along with all of its snapshots.

To create a volume
1. On the Volumes screen, click Create volume.

2. In the Create volume window, specify a volume name and size in gigabytes, select a storage policy, and then click Create.

To remove a volume
1. On the Volumes tab, check the status of the volume you want to remove.
2. If the status is "In use", click the volume, and then click Force detach.
3. If the status is "Available", click the volume, and then click Delete.
Attaching and detaching volumes

Limitations

- You can only attach and detach non-boot volumes.

Prerequisites

- A volume is created, as described in "Creating and deleting volumes" (p. 50).
- To be able to use volumes attached to VMs, they must be initialized inside the guest OS by standard means.

To attach a volume to a virtual machine

1. On the Volumes screen, click an unused volume.
2. On the volume right pane, click Attach.
3. In the Attach volume window, select the VM from the drop-down list, and then click Done.

To detach a volume from a virtual machine

1. On the Volumes screen, click a volume that is in use.
2. If the VM is stopped, click Detach on the volume right pane.
3. If the VM is running, click Force detach on the volume right pane.
Warning!
There is a risk of data loss.

Resizing volumes
You can change volume size only by increasing it. Volumes can be extended for both running (online resizing) and stopped (offline resizing) virtual machines. Online volume resizing allows users to avoid downtime and enables scaling VM storage capacity on the fly without service interruption.

Limitations
- You cannot shrink volumes.
- During volume resizing, the file system inside the guest OS is not extended.
- If you revert a volume to a snapshot that was taken before the volume extension, the new volume size will be retained.

Prerequisites
- A volume is created, as described in "Creating and deleting volumes" (p. 50).

To extend a volume
1. On the Volumes screen, click a volume.
2. Click the pencil icon in the Size field.
3. Enter the desired volume capacity, and then click the tick icon.

After the volume is extended, you will need to re-partition the disk inside the guest OS to allocate the added disk space.

Changing the storage policy for volumes
You can manage compute volume redundancy and performance by changing the storage policy applied to the volume. The storage policy can be changed for volumes attached to both running and stopped virtual machines.

Limitations
- Only storage policies enabled by project quotas will be available for selection.

Prerequisites
- A volume is created, as described in "Creating and deleting volumes" (p. 50).

To change the storage policy of a volume
1. On the Volumes screen, click a volume.
2. Click the pencil icon in the Storage policy field.
3. Select a new storage policy, and then click the tick icon. You can choose only between storage policies with the same redundancy type.
Creating images from volumes

To create multiple VMs with the same boot volume, you can create a template from an existing boot volume and deploy VMs from it.

**Prerequisites**

- Linux virtual machines have cloud-Init installed, as described in "Preparing Linux templates" (p. 44).
- Windows virtual machines have Cloudbase-Init and OpenSSH Server installed, as described in "Preparing Windows templates" (p. 45).
- [Optional] Logging is enabled inside a virtual machine, as instructed in "Enabling logging for virtual machines" (p. 48).

To create a template from a boot volume

1. Power off the VM that the original volume is attached to.
2. Switch to the Volumes screen, click volume's ellipsis button and select Create image.
3. In the Create image window, enter an image name, and then click Create.

The new image will appear on the Images screen.

Cloning volumes

**Limitations**

- You can clone volumes that are not attached to VMs or attached to stopped VMs.

**Prerequisites**

- A volume is created, as described in "Creating and deleting volumes" (p. 50).

To clone a volume
1. On the **Volumes** screen, click a volume.
2. On the volume right pane, click **Clone**.
3. In the **Clone volume** window, specify a volume name, size, and storage policy. Click **Clone**.

### Managing volume snapshots

You can save the current state of a VM file system or user data by creating a snapshot of a volume. A snapshot of a boot volume may be useful, for example, before updating VM software. If anything goes wrong, you will be able to revert the VM to a working state at any time. A snapshot of a data volume can be used for backing up user data and testing purposes.

**Prerequisites**

- To create a consistent snapshot of a running VM's volume, the guest tools must be installed in the VM, as described in "Installing guest tools" (p. 22). The QEMU guest agent included in the guest tools image automatically quiesces the filesystem during snapshotting.

**To create a snapshot of a volume**

1. On the **Volumes** screen, click a volume.
2. In the volume right pane, switch to **Snapshots**, and then click **Create snapshot**.
To manage a volume snapshot

Select a volume and open the Snapshots tab on its right pane.

You can do the following:

- Create a new volume from the snapshot.
- Create a template from the snapshot.
- Discard all changes that have been made to the volume since the snapshot was taken. This action is available only for VMs with the "Shut down" and "Shelved offloaded" statuses.
**Warning!**
As each volume has only one snapshot branch, all snapshots created after the snapshot you are reverting to will be deleted. If you want to save a subsequent snapshot before reverting, create a volume or an image from it first.

- Change the snapshot name and description.
- Reset the snapshot stuck in an "Error" state or transitional state to the "Available" state.
- Remove the snapshot.

To perform these actions, click the ellipsis button next to a snapshot, and then click the corresponding action.
Managing virtual networks

Limitations

- You can delete a compute network only if no VMs are connected to it.

To add a new virtual network

1. On the Networks screen, click Create virtual network.
2. On the Network configuration step, do the following:
   a. Enable or disable IP address management:
      - With IP address management enabled, VMs connected to the network will automatically be assigned IP addresses from allocation pools by the built-in DHCP server and use custom DNS servers. Additionally, spoofing protection will be enabled for all VM network ports by default. Each VM network interface will be able to accept and send IP packets only if it has IP and MAC addresses assigned. You can disable spoofing protection manually for a VM interface, if required.
      - With IP address management disabled, VMs connected to the network will obtain IP addresses from the DHCP servers in that network, if any. Also, spoofing protection will be disabled for all VM network ports, and you cannot enable it manually. This means that each VM network interface, with or without assigned IP and MAC addresses, will be able to accept and send IP packets.
      In any case, you will be able to manually assign static IP addresses from inside the VMs.
   b. Specify a name, and then click Next.
3. If you enabled IP address management, you will move on to the IP address management step, where you can add an IPv4 subnet:
a. In the Subnets section, click Add and select IPv4 subnet.
b. In the Add IPv4 subnet window, specify the network's IPv4 address range and, optionally, specify a gateway. If you leave the Gateway field blank, the gateway will be omitted from network settings.
c. Enable or disable the built-in DHCP server:
   • With the DHCP server enabled, VM network interfaces will automatically be assigned IP addresses: either from allocation pools or, if there are no pools, from the network's entire IP range. The DHCP server will receive the first two IP addresses from the IP pool. For example:
     ◦ In a subnet with CIDR 192.168.128.0/24 and without a gateway, the DHCP server will be assigned the IP addresses 192.168.128.1 and 192.168.128.2.
     ◦ In a subnet with CIDR 192.168.128.0/24 and the gateway IP address set to 192.168.128.1, the DHCP server will be assigned the IP addresses 192.168.128.2 and 192.168.128.3.
   • With the DHCP server disabled, VM network interfaces will still get IP addresses, but you will have to manually assign them inside VMs. The virtual DHCP service will work only within the current network and will not be exposed to other networks.
d. Specify one or more allocation pools (ranges of IP addresses that will be automatically assigned to VMs).
e. Specify DNS servers that will be used by virtual machines. These servers can be delivered to VMs via the built-in DHCP server or by using the cloud-init network configuration (if cloud-init is installed in the VM).
f. Click Add.
4. On the **Summary** step, review the configuration, and then click **Create virtual network**.
To edit parameters of a virtual network

1. On the Networks screen, click the required network.
2. On the network right pane, click the pencil icon next to the network name or IPv4 subnet.
3. Make changes and save them.

To delete a compute network

Click the ellipsis icon next to the required network, and then click Delete. To remove multiple compute networks at once, select them, and then click Delete.
Managing VPN connections

With Virtual Private Network (VPN) as a service, self-service users can extend virtual networks across public networks, such as the Internet. To connect two or more remote endpoints, VPNs use virtual connections tunneled through physical networks. To secure VPN communication, the traffic that flows between remote endpoints is encrypted. The VPN implementation uses the Internet Key Exchange (IKE) and IP Security (IPsec) protocols to establish secure VPN connections and is based on the strongSwan IPsec solution.

To better understand how a VPN works, consider the following example:

- In the **cluster 1**, the virtual machine **VM1** is connected to the virtual network **privnet1** (192.168.10.0/24) via the network interface with IP address 192.168.10.10. The network **privnet1** is exposed to public networks via the router **router1** with the external port 10.10.10.5.
- In the **cluster 2**, the virtual machine **VM2** is connected to the virtual network **privnet2** (192.168.20.0/24) via the network interface with IP address 192.168.20.20. The network **privnet2** is exposed to public networks via the router **router2** with the external port 10.10.10.4.
- The VPN tunnel is created between the routers **router1** and **router2** that serve as VPN gateways, thus allowing mutual connectivity between the networks **privnet1** and **privnet2**.
- The virtual machines **VM1** and **VM2** are visible to each other at their private IP addresses. That is, **VM1** can access **VM2** at 192.168.20.20, and **VM2** can access **VM1** at 192.168.10.10.

For key exchange between communicating parties, two IKE versions are available: IKE version 1 (IKEv1) and IKE version 2 (IKEv2). IKEv2 is the latest version of the IKE protocol and it supports connecting multiple remote subnets.

In the example above:
• **VPN1** uses the IKEv1 and connects the network **network1** with the **network3**.
• **VPN2** uses the IKEv2 and connects the network **network2** with the two networks **network4** and **network5**.

Creating VPN connections

**Limitations**

• A virtual machine must have no floating IP addresses assigned to its private network interface. Otherwise, the VM traffic cannot be routed through a VPN tunnel.

**Prerequisites**

• You have a virtual router created, as described in "Managing virtual routers" (p. 68).
• The virtual router connects the physical network with virtual networks that you want to be exposed.
• Networks that will be connected via a VPN tunnel must have non-overlapping IP ranges.

**To create a VPN connection**

1. On the **VPN** screen, click **Create VPN**.
2. On the **Configure IKE** step, specify parameters for the IKE policy that will be used to establish a VPN connection. You can choose to use an existing IKE policy or create a new one. For the new IKE policy, do the following:
   a. Specify a custom name for the IKE policy.
   b. Specify the key lifetime, in seconds, that will define the rekeying interval. The IKE key lifetime must be greater than that of the IPsec key.
   c. Select the authentication algorithm that will be used to verify the data integrity and authenticity.
   d. Select the encryption algorithm that will be used to ensure that data is not viewable while in transit.
   e. Select the IKE version 1 or 2. Version 1 has limitations, for example, it does not support multiple subnets.
   f. Select the Diffie-Hellman (DH) group that will be used to build the encryption key for the key exchange process. Higher group numbers are more secure but require additional time for the key to compute.
   g. Click **Next**.
3. On the **Configure IPsec** step, specify parameters for the IPsec policy that will be used to encrypt the VPN traffic. You can choose to use an existing IPsec policy or create a new one. For the new IPsec policy, do the following:
   
a. Specify a custom name for the IPsec policy.

b. Specify the key lifetime, in seconds, that will define the rekeying interval. The IPsec key lifetime must not be greater than that of the IKE key.

c. Select the authentication algorithm that will be used to verify the data integrity and authenticity.

d. Select the encryption algorithm that will be used to ensure that data is not viewable while in transit.

e. Select the Diffie-Hellman (DH) group that will be used to build the encryption key for the key exchange process. Higher group numbers are more secure but require additional time for the key to compute.

f. Click **Next**.
4. On the **Create endpoint groups** step, select a virtual router and specify local and remote subnets that will be connected by the VPN tunnel. You can choose to use existing local and remote endpoints, or create new ones. For the new endpoints, do the following:
   a. Specify a custom name for the local endpoint, and then select local subnets.
   b. Specify a custom name for the remote endpoint, and then add remote subnets in the CIDR format.
   c. Click **Next**.
5. On the **Configure VPN** step, specify parameters to establish the VPN connection with a remote gateway:
   a. Specify a custom name for the VPN connection.
   b. Specify the public IPv4 address of the remote gateway, that is, peer IP address.
   c. Generate the pre-shared key that will be used for the peer authentication.
   d. [Optional] If necessary, you can also configure additional settings by selecting **Advanced settings** and specifying the following parameters:
      • The peer ID for authentication and the mode for establishing a connection.
      • The Dead Peer Detection (DPD) policy, interval, and timeout, in seconds.
   e. Click **Next**.
6. On the **Summary** step, review the configuration, and then click **Create**.

When the VPN connection is created, its status will change from "Pending creation" to "Down". The connection will become active once the VPN tunnel is configured by the other VPN party and the IKE authorization is successful.

**Important**
The IKE and IPsec configuration must match for both communicating parties. Otherwise, the VPN connection between them will not be established.

**Editing VPN connections**

After a VPN connection is created, you can change its endpoint groups and VPN settings at any time.

**Limitations**

- You cannot change the virtual router and security policies used to establish a VPN connection.

**Prerequisites**

- A VPN connection is created, as described in "Creating VPN connections" (p. 62).

To **edit a VPN connection**
1. On the **VPN** screen, click a VPN connection to modify.
2. On the connection right pane, click **Edit**.
3. In the **Edit VPN** window, configure local and remote endpoints, if required, and then click **Next**.
4. On the next step, change VPN parameters such as the VPN connection name, peer IP address, and PSK key. If necessary, you can also configure additional settings by selecting **Advanced settings** and editing the required parameters.
5. Click **Save** to apply your changes.

After you update the connection parameters, its status will change to "Down". The connection will re-initiate once the parameters are similarly updated by the other VPN party.

**Important**
The IKE and IPsec configuration must match for both communicating parties. Otherwise, the VPN connection between them will not be established.

---

### Restarting and deleting VPN connections

You can forcefully re-initiate a VPN connection by manually restarting it. When you delete a VPN connection, you also delete the IKE and IPsec policies and endpoint groups that were created during the VPN creation.

**Prerequisites**

- A VPN connection is created, as described in "Creating VPN connections" (p. 62).

**To restart a VPN connection**

1. On the **VPN** screen, click a VPN connection to restart.
2. On the connection right pane, click **Restart**.
3. Click **Restart VPN** in the confirmation window.

**To delete a VPN connection**

1. On the **VPN** screen, click a VPN connection to delete.
2. On the connection right pane, click **Delete**.
3. Click **Delete** in the confirmation window.
Managing virtual routers

Virtual routers provide L3 services such as routing and Source Network Address Translation (SNAT) between virtual and physical networks, or different virtual networks:

- A virtual router between virtual and physical networks provides access to public networks, such as the Internet, for VMs connected to this virtual network.
- A virtual router between different virtual networks provides network communication for VMs connected to these virtual networks.

A virtual router has two types of ports:

- An external gateway that is connected to a physical network.
- An internal port that is connected to a virtual network.

With virtual routers, you can do the following:

- Create virtual routers
- Change external or internal router interfaces
- Create, edit, and delete static routes
- Change a router name
- Delete a router

Limitations

- A router can only connect networks that have IP management enabled.
- You can delete a virtual router if no floating IP addresses are associated with any network it is connected to.

Prerequisites

- Compute networks are created, as described in "Managing virtual networks" (p. 57).
- The compute networks that are to be connected to a router have a gateway specified.

To create a virtual router

1. Navigate to the Routers screen, and then click Add router.
2. In the Add router window:
   a. Specify a router name.
   b. From the Network drop-down menu, select a physical network through which external access will be provided via an external gateway. The new external gateway will pick an unused IP address from the selected physical network.
   c. In the Add internal interfaces section, select one or more virtual networks to connect to a router via internal interfaces. The new internal interfaces will attempt to use the gateway IP address of the selected virtual networks by default.
   d. [Optional] Select or deselect the SNAT check box to enable or disable SNAT on the external
gateway of the router. With SNAT enabled, the router replaces VM private IP addresses with the public IP address of its external gateway.

3. Click Create.

Managing router interfaces

Prerequisites

- You have a virtual router created, as described in "Managing virtual routers" (p. 68).

To add an external router interface
1. If you already have an external gateway, remove the existing one first.
2. On the Routers screen, click the router name to open the list of its interfaces.
3. Click Add on the toolbar, or click Add interface if there are no interfaces to show.
4. In the Add interface window, do the following:
   a. Select External gateway.
   b. From the Network drop-down menu, select a physical network to connect to the router. The new interface will pick an unused IP address from the selected physical network. You can also provide a specific IP address from the selected physical network to assign to the interface in the IP address field.
   c. [Optional] Select or deselect the SNAT check box to enable or disable SNAT on the external gateway of the router. With SNAT enabled, the router replaces VM private IP addresses with the public IP address of its external gateway.
5. Click **Add**.

**To add an internal router interface**

1. On the **Routers** screen, click the router name to open the list of its interfaces.
2. Click **Add**.
3. In the **Add interface** window, select a network to connect to the router from the **Network** dropdown menu. The new interface will attempt to use the gateway IP address of the selected virtual network by default. If it is in use, specify an unused IP address from the selected virtual network to assign to the interface in the **IP address** field.

![Add interface dialog]

4. Click **Add**.

**To edit router interface parameters**

1. Click the ellipsis icon next to the interface, and then click **Edit**.
2. In the **Edit interface** window, change the IP address.
3. For an external interface, enable or disable SNAT on it.
4. Click **Save** to save your changes.

**To remove a router interface**
1. Select the interface you want to remove.
2. Click the ellipsis icon next to it, and then click **Delete**.

## Managing static routes

You can also configure static routes of a router by manually adding entries into its routing table. This can be useful, for example, if you do not need a mutual connection between two virtual networks and want only one virtual network to be accessible from the other.

Consider the following example:

- The virtual machine **VM1** is connected to the virtual network **private1** (192.168.128.0/24) via the network interface with IP address 192.168.128.10.
- The virtual machine **VM2** is connected to the virtual network **private2** (192.168.30.0/24) via the network interface with IP address 192.168.30.10.
- The router **router1** connects the network **private1** to the physical network via the external gateway with the IP address 10.94.129.73.
- The router **router2** connects the network **private2** to the physical network via the external gateway with the IP address 10.94.129.74.

To be able to access **VM2** from **VM1**, you need to add a static route for **router1**, specifying the CIDR of **private2**, that is 192.168.30.0/24, as the destination subnet and the external gateway IP address of **router2**, that is 10.94.129.74, as the next hop IP address. In this case, when an IP packet for 192.168.30.10 reaches **router1**, it will be forwarded to **router2** and then to **VM2**.

### Prerequisites

- You have a virtual router created, as described in "Managing virtual routers" (p. 68).

### To create a static route for a router

1. On the **Routers** screen, click the router name. Open the **Static routes** tab, and then click **Add** on the right pane. If there are no routes to show, click **Add static route**.
2. In the **Add static route** window, specify the destination subnet range and mask in CIDR notation and the next hop's IP address. The next hop's IP address must belong to one of the networks that the router is connected to.
3. Click Add.

To edit a static route

1. Click the ellipsis icon next to the required static route, and then click Edit.
2. In the Edit static route window, change the desired parameters, and then click Save.

To remove a static route

Click the ellipsis icon next to the static route you want to remove, and then click Delete.
Managing floating IP addresses

A virtual machine connected to a virtual network can be accessed from public networks, such as the Internet, by means of a floating IP address. Such an address is picked from a physical network and mapped to the VM's private IP address. The floating and private IP addresses are used at the same time on the VM’s network interface. The private IP address is used to communicate with other VMs on the virtual network. The floating IP address is used to access the VM from public networks. The VM guest operating system is unaware of the assigned floating IP address.

Prerequisites

- You have a virtual router created, as described in "Managing virtual routers" (p. 68).
- The virtual machine to assign a floating IP to has a fixed private IP address.
- The virtual router connects the physical network, from which a floating IP will be picked, with the VM's virtual network.

To create a floating IP address and assign it to a virtual machine

1. On the Floating IPs screen, click Add floating IP.
2. In the Add floating IP address, select a physical network, from which a floating IP will be picked, and a VM network interface with a fixed private IP address.
3. Click Add.

To re-assign a floating IP address to another virtual machine

1. Click the ellipsis icon next to the floating IP address, and then click Unassign.
2. Once the VM name disappears in the Assigned to column, click the ellipsis icon again, and then select Assign.
3. In the **Assign floating IP address** window, select a VM network interface with a fixed private IP address.

4. Click **Assign**.

**To remove a floating IP address**

1. Unassign it from a virtual machine. Click the ellipsis icon next to the floating IP address, and then click **Unassign**.

2. Click the ellipsis icon again, and then select **Delete**.
Managing load balancers

Virtuozzo Hybrid Cloud offers load balancing as a service for the compute infrastructure. Load balancing ensures fault tolerance and improves performance of web applications by distributing incoming network traffic across virtual machines from a balancing pool. A load balancer receives and then routes incoming requests to a suitable VM based on a configured balancing algorithm and VM health.

Limitations

- The forwarding rule and protocol cannot be changed after the load balancer is created.

Prerequisites

- A network where a load balancer will operate has IP management enabled.
- All VMs that will be added in balancing pools have fixed IP addresses.

To create a load balancer with balancing pools

1. On the Load balancers screen, click Create load balancer.
2. In the Create load balancer window, do the following:
   a. Specify a name and optionally description.
   b. Enable or disable high availability:
      - With high availability enabled, two load balancer instances will be created. They will work in the Active/Standby mode according to the Virtual Router Redundancy Protocol (VRRP).
      - With high availability disabled, a single load balancer instance will be created.

3. In the Network settings section, select the network that the load balancer will operate in and, optionally, specify an IP address that will be allocated to the load balancer.
4. If a chosen virtual network is connected to a physical network via a router, you can assign a floating IP address to the load balancer. To do it, select Use a floating IP address, and from the drop-down menu that appears, choose either to use an available floating IP address or to create a new one.
5. In the **Balancing pools** section, create a balancing pool to forward traffic from the load balancer to virtual machines by clicking **Add**.

In the **Create balancing pool** window that opens, do the following:

a. In the **Forwarding rule** section, select a forwarding rule from the load balancer to the backend protocol, and then specify the ports for incoming and destination connections.

   Note the following:
   - With the **HTTPS -> HTTPS** rule, all virtual machines need to have the same SSL certificate (or a certificate chain).
   - With the **HTTPS -> HTTP** rule, you need to upload an SSL certificate (or a certificate chain) in the PEM format and a private key in the PEM format.

b. In the **Balancing settings** section, select the balancing algorithm:
   - **Least connections.** Requests will be forwarded to the VM with the least number of active connections.
   - **Round robin.** All VMs will receive requests in the round-robin manner.
   - **Source IP.** Requests from a unique source IP address will be directed to the same VM.

Enable/disable the **Sticky session** option to enable/disable session persistence. The load balancer will generate a cookie that will be inserted into each response. The cookie will be used to send future requests to the same VM.

**Note**

This option is not available in the SSL passthrough mode.
c. In the **Members** section, add members, that is, virtual machines, to the balancing pool by clicking **Add**. Each VM can be included to multiple balancing pools.

In the **Add members** window that opens, select the desired VMs, and then click **Add**.

---

![Add members window]

---

d. In the **Health monitor** section, select the protocol that will be used for monitoring members availability:

- **HTTP/HTTPS**. The HTTP/HTTPS method GET will be used to check for the response status code 200. Additionally, specify the URL path to the health monitor.
- **TCP/UDP**. The health monitor will check the TCP/UDP connection on the backend port.
- **PING**. The health monitor will check members' IP addresses.

---

![Health monitor settings]

---

By default, the health monitor removes a member from a balancing pool if it fails three consecutive health checks of five-second intervals. When a member returns to operation and responds successfully to three consecutive health checks, it is added to the pool again. You
can manually set the health monitor parameters, such as the interval after which VM health is checked, the time after which the monitor times out, healthy and unhealthy thresholds. To change the default parameters, click **Edit parameters**, enter the desired values, and then click **Save**.

### Edit health monitor parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Interval</strong></td>
<td>5</td>
</tr>
<tr>
<td><strong>Timeout</strong></td>
<td>5</td>
</tr>
<tr>
<td><strong>Healthy threshold</strong></td>
<td>3</td>
</tr>
<tr>
<td><strong>Unhealthy threshold</strong></td>
<td>3</td>
</tr>
</tbody>
</table>

- **Cancel**
- **Save**

**e. Click Create.**

6. **[Optional]** Add more balancing pools, as described above.

7. **Click Create.**

To monitor performance and health of a load balancer

Open the **Overview** tab on the load balancer right pane.
The following charts are available:

**Members state**

The total number of members in the balancing pools grouped by status: “Healthy,” “Unhealthy,” “Error,” and “Disabled”.

**CPU/RAM**

CPU and RAM usage by the load balancer.

**Network**

Incoming and outgoing network traffic.

**Active connections**

The number of active connections.

**Error requests**

The number of error requests.

*To edit the name or description of a load balancer*

Click the ellipsis icon next to the required load balancer, and then click Edit.

*To disable/enable or remove a load balancer*

Click the ellipsis icon next to the required load balancer, and then click the desired action. To remove multiple load balancers at once, select them, and then click Delete.

**Managing balancing pools**

To see a list of balancing pools in a load balancer, click its name.

You can open the pool right pane to monitor its performance and health on the **Overview** tab, see its parameters on the **Properties** tab, and manage its members on the **Members** tab.

*To add another balancing pool to a load balancer*

Click Create balancing pool, and then fill in the fields, as described in “Managing load balancers” (p. 76). The newly added pool will appear in the list of balancing pools.

*To edit a balancing pool*
• To edit the balancing settings such as the balancing algorithm and session persistence, click the ellipsis icon next to a pool, and then click **Edit**.

• To edit the health monitor parameters, click the ellipsis icon next to a pool, and then click **Edit health monitor**.

**To add more members to a balancing pool**

Click the ellipsis icon next to the required balancing pool, and then click **+ Add members**.

**To remove a balancing pool**

Click the ellipsis icon next to the required balancing pool, and then click **Delete**. To remove multiple balancing pools at once, select them, and then click **Delete**.
Managing SSH keys

Use of SSH keys allows you to secure SSH access to virtual machines. You can generate a key pair on a client from which you will connect to VMs via SSH. The private key will be stored on the client and you will be able to copy it to other nodes. The public key will need to be uploaded to Virtuozzo Hybrid Cloud and specified during VM creation. It will be injected into the VM by cloud-init and used for OpenSSH authentication. Keys injection is supported for both Linux and Windows virtual machines.

Limitations

- You can specify an SSH key only if you deploy a VM from a template or boot volume (not an ISO image).
- If a key has been injected into one or more VMs, it will remain inside those VMs even if you delete it from the panel.

Prerequisites

- The cloud-init utility and OpenSSH Server are installed in a VM template or boot volume, as instructed in "Preparing templates" (p. 44).

To add a public key

1. Generate an SSH key pair on a client by using the ssh-keygen utility:

   ```
 # ssh-keygen -t rsa
   ```

2. On the SSH keys screen, click Add key.

3. In the Add SSH key window, specify a key name and copy the key value from the generated public key located in /root/.ssh/id_rsa.pub. Optionally, you can add a key description.
To delete a public key

1. On the SSH keys screen, select the SSH key you want to delete, and then click **Delete**.
2. Click **Delete** in the confirmation window.

If this key has been injected into one or more virtual machines, it will remain inside those virtual machines.