
Virtuozzo Hybrid
Infrastructure 4.6
Benchmarking Guide

June 9, 2021



Virtuozzo International GmbH

Vordergasse 59

8200 Schaffhausen

Switzerland

Tel: + 41 52 632 0411

Fax: + 41 52 672 2010

https://virtuozzo.com

Copyright ©2016-2019 Virtuozzo International GmbH. All rights reserved.

This product is protected by United States and international copyright laws. The product’s underlying

technology, patents, and trademarks are listed at https://virtuozzo.com.

Microsoft, Windows, Windows Server, Windows NT, Windows Vista, and MS-DOS are registered trademarks

of Microsoft Corporation.

Apple, Mac, the Mac logo, Mac OS, iPad, iPhone, iPod touch, FaceTime HD camera and iSight are trademarks

of Apple Inc., registered in the US and other countries.

Linux is a registered trademark of Linus Torvalds. All other marks and names mentioned herein may be

trademarks of their respective owners.

https://virtuozzo.com
https://virtuozzo.com/legal.html


Contents

1. About This Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Recommendations on Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3. Benchmarking Cluster Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4. Benchmarking Virtual Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5. Understanding Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6. Appendix: Job Profile Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6.1 randread.fio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6.2 randwrite.fio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.3 randrw.fio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.4 seqread.fio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.5 seqwrite.fio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6.6 expand.fio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6.7 prepare-set.fio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

i



CHAPTER 1

About This Guide

This guide describes how to benchmark the storage system of Virtuozzo Hybrid Infrastructure using the

open-source fio (Flexible I/O) tester. This benchmarking tool can generate various I/O workloads and can be

run on multiple nodes in parallel. To simplify testing, a number of ready-to-use job profiles for different

types of workloads are listed in the Appendix.
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CHAPTER 2

Recommendations on
Benchmarking

Fio allows you to test storage using random and sequential workloads.

Random workloads indicate how databases, mail or web servers, and other similar software may perform if

deployed inside VMs located on your storage. Such workloads typically use small blocks of data, e.g., 4K.

HDDs are usually not very efficient at random reads/writes, because in such cases their read-and-write heads

have to spend time on moving around the disk a lot. SSDs, in turn, typically have the block size of 1M, so they

need to read and write 1M even if just 4K need to be changed. The available random read/write job profiles

are set to use 4K blocks of data.

Sequential workloads can give you an idea about the performance of writing large files onto disks: creation

of backups, migration of VM images, and such. Such job profiles are set to use 1M blocks of data.

Other considerations that you should take into account are:

• It is recommended to have a cluster made of identical nodes. In this case, a single fio job profile will be

suitable for benchmarking all of the nodes. If your cluster nodes have different hardware, you will need

to create and use as many fio job profiles as there are node hardware configurations.

• The dataset needs to be at least double the size of node’s RAM. This is needed so the dataset will not fit

completely into RAM and be cached, allowing you to measure disk’s actual read performance.

• To improve validity of results, 3-5 iterations of the same test need to be performed.

• Each test should take at least 60 seconds, 120-300 seconds are recommended. This allows to negate

the benefits of fast cache on some SSD drives.

Three main scenarios are usually tested:
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Chapter 2. Recommendations on Benchmarking

• Reads: 1M sequential and 4K random.

• Writes: 1M sequential and 4K random.

• Expand: sequential writes to a file that gradually increases in size. For example, backups, database files,

VM disks, etc.
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CHAPTER 3

Benchmarking Cluster Nodes

Prepare for testing as follows:

1. Install fio 3.3 or newer on all cluster nodes and on the machine you will run the benchmarks from

(unless it is one of the cluster nodes):

# yum install fio -y

2. Create a target directory for the dataset and set its redundancy mode to 3 replicas (instead of 1 replica

set by default). If you have multiple tiers, also specify the one you want to test, e.g., 1.

# mkdir /mnt/vstorage/benchmark_dir
# vstorage -c <cluster_name> set-attr -R /mnt/vstorage/benchmark_dir replicas=3 tier=1

If you want to test multiple tiers, create and use a dedicated benchmark directory for every tier.

3. Download fio job profiles to a host or virtual environment that you will run the benchmark from. This

host or VE must have network access to all cluster nodes.

# wget -rnp -nH -R "index*" --cut-dirs=2 -e robots=off -A '*.fio' \
https://docs.virtuozzo.com/fio/node/

Note: Cluster node job profiles cannot be used to benchmark VMs.

4. On each cluster node run:

# fio --server

Fio will use port 8765 by default. In any case make sure that the port is open. For example, you can

open it with an iptables rule:
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Chapter 3. Benchmarking Cluster Nodes

# iptables -I INPUT -p tcp -m tcp -m multiport --dports 8765 -j ACCEPT

5. Specify the required size and numjobs values in every node job profile:

• size is at least double node’s RAM divided by node’s CPU cores,

• numjobs is the number of node’s CPU cores.

If Hyper-Threading is enabled, use the number of CPU threads instead. The goal is to fully load the CPU

without overcommitting it.

6. Create the dataset. From the directory with the fio profiles, run

# for N in {<node1>,<node2>,...,<nodeN>}; do fio --minimal --client=$N prepare-set.fio; done

Where nodeN is the host name or IP address of a cluster node.

This command will prepare identical test datasets on all cluster nodes in succession. This may take

several minutes but will provide less deviation of results during actual benchmarking. Ignore any

performance results displayed by this fio run.

7. If cluster nodes have SSD/NVMe caches, make sure they have been flushed before running any

benchmarks. You can check the caches as follows:

1. On a cluster node, run

# vstorage -c <cluster_name> top

2. While in the text-based dashboard, press c to expand the chunks tab and then cycle columns with i

until you see the JRN_FULL and FLAGS columns.

3. Wait until JRN_FULL is 0% and each CS ID is marked by a c flag, e.g., “JC c ”. This may take some time

when the cluster is not under I/O load.

Now you are ready to run the benchmark. It is recommended to run read tests before write and read/write

tests.

From the directory with the fio profiles, run the benchmark on all cluster nodes as follows (<nodeN> is the host

name or IP address of a cluster node):

• Sequential read test:

# fio --client=<node1> seqread.fio --client=<node2> seqread.fio [...]

• Random read test:
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Chapter 3. Benchmarking Cluster Nodes

# fio --client=<node1> randread.fio --client=<node2> randread.fio [...]

• Sequential write test (run after making sure that caches have been flushed):

# fio --client=<node1> seqwrite.fio --client=<node2> seqwrite.fio [...]

• Random write test (run after making sure that caches have been flushed):

# fio --client=<node1> randwrite.fio --client=<node2> randwrite.fio [...]

• Mixed read/write test (run after making sure that caches have been flushed):

# fio --client=<node1> randrw.fio --client=<node2> randrw.fio [...]

• Expand test:

# fio --client=<node1> expand.fio --client=<node2> expand.fio [...]
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CHAPTER 4

Benchmarking Virtual
Machines

Aside from benchmarking cluster hardware nodes, you can also test performance from inside virtual

machines created on Virtuozzo Hybrid Infrastructure. If you want compare other virtualization solutions with

Virtuozzo Hybrid Infrastructure, make sure that VMs you run tests on have identical vCPUs, RAM and other

parameters.

You may want to test the following:

• A set up of one VM per cluster node. In this case, you will obtain results for the entire cluster with

virtualization.

• A single VM in the cluster. In this case you will obtain the maximum performance achievable inside VMs.

Important: The storage policy for the compute cluster must be set to “3 replicas”. For more details, see the

Administrator’s Guide.

To prepare for testing, do the following on any node in the compute cluster:

1. Install fio 3.3 or newer on all cluster nodes and on the machine you will run the benchmarks from

(unless it is one of the cluster nodes):

# yum install fio -y

2. Download images of test VM templates:

# wget https://docs.virtuozzo.com/fio/fio-test-images.tar.gz
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Chapter 4. Benchmarking Virtual Machines

3. Extract VM images:

# tar xvzf fio-test-images.tar.gz

4. Create templates from the extracted images:

# vinfra service compute image create --file Centos7-fio-test-sys.qcow \
--os-distro centos7 Centos7-fio-test-sys
# vinfra service compute image create --file Centos7-fio-test-blank.qcow \
Centos7-fio-test-blank

5. Deploy test VMs from templates:

# vinfra service compute server create FIO-Centos7 --count <N> --network id=<net> \
--volume source=image,id=Centos7-fio-test-sys,size=10,boot-index=0 \
--volume source=image,id=Centos7-fio-test-blank,size=64,boot-index=1 --flavor large

Where

• <N> is the number of nodes in your compute cluster, e.g., 5. It is recommended to create VMs on a

clean cluster, so that each node will have one VM. If you want to test a single VM, use --count 1.

• <net> is a network accessible by the host or virtual environment you will run the tests from, e.g.,

“Public”.

This command will create and run the set number of identical virtual machines with these

characteristics:

• 4 vCPUs and 8 GB RAM (flavor “Large”). If you want to use another flavor, make sure to change job

profiles accordingly: set size to at least double VM’s RAM divided by vCPUs and numjobs to the

number of vCPUs.

• A 10 GB Centos 7 system disk and a 64 GB ext4 disk for tests.

• Attached to the chosen network.

• Login: root, password: CDEkOA%rXfd%wWnOHDXm.

• Fio benchmark installed, default fio port 8765 open, fio --server running.

6. Download fio job profiles to a host or virtual environment that you will run the benchmark from. This

host or VE must have network access to all test VMs.

# wget -rnp -nH -R "index*" --cut-dirs=2 -e robots=off -A '*.fio' \
https://docs.virtuozzo.com/fio/vm/
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Chapter 4. Benchmarking Virtual Machines

Note: VM job profiles cannot be used to benchmark cluster nodes.

7. Create the dataset. From the directory with the fio profiles, run

# for N in {<node1>,<node2>,...,<nodeN>}; do fio --minimal --client=$N prepare-set.fio; done

Where nodeN is the host name or IP address of a test VM.

This command will prepare identical test datasets on all test VMs in succession. This may take several

minutes but will provide less deviation of results during actual benchmarking. Ignore any performance

results displayed by this fio run.

If you only want to test a single VM per cluster, run fio --minimal --client=<node1> prepare-set.fio.

8. If cluster nodes have SSD/NVMe caches, make sure they have been flushed before running any

benchmarks. You can check the caches as follows:

1. On a cluster node, run

# vstorage -c <cluster_name> top

2. While in the text-based dashboard, press c to expand the chunks tab and then cycle columns with i

until you see the JRN_FULL and FLAGS columns.

3. Wait until JRN_FULL is 0% and each CS ID is marked by a c flag, e.g., “JC c ”. This may take some time

when the cluster is not under I/O load.

Now you are ready to run the benchmark. It is recommended to run read tests before write and read/write

tests.

From the directory with the fio profiles, run the benchmark on all test VMs as follows (<nodeN> is the host

name or IP address of a test VM):

• Sequential read test:

# fio --client=<node1> seqread.fio --client=<node2> seqread.fio [...]

• Random read test:

# fio --client=<node1> randread.fio --client=<node2> randread.fio [...]

• Sequential write test (run after making sure that caches have been flushed):

# fio --client=<node1> seqwrite.fio --client=<node2> seqwrite.fio [...]
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Chapter 4. Benchmarking Virtual Machines

• Random write test (run after making sure that caches have been flushed):

# fio --client=<node1> randwrite.fio --client=<node2> randwrite.fio [...]

• Mixed read/write test (run after making sure that caches have been flushed):

# fio --client=<node1> randrw.fio --client=<node2> randrw.fio [...]

• Expand test:

# fio --client=<node1> expand.fio --client=<node2> expand.fio [...]
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CHAPTER 5

Understanding Results

Fio will start displaying results after you execute the benchmarking command. The more nodes participate in

the test, the more results will be output by fio. However, a summary will be provided at the end indicated by

the words “All clients”. For example:

All clients: (groupid=0, jobs=80): err= 0: pid=0: Mon Jan 28 19:18:23 2019
read: IOPS=198k, BW=772Mi (809M)(45.3GiB/60078msec)
slat (usec): min=2, max=1510, avg= 6.77, stdev= 3.29
clat (nsec): min=1567, max=287148k, avg=3787988.85, stdev=6333559.68
lat (usec): min=50, max=287152, avg=3794.83, stdev=6333.46

bw ( KiB/s): min= 2048, max=113536, per=0.08%, avg=9880.44, stdev=4052.50, samples=9600
iops : min= 512, max=28384, avg=2470.06, stdev=1013.12, samples=9600
write: IOPS=84.8k, BW=331Mi (347M)(19.4GiB/60078msec)
slat (usec): min=2, max=1055, avg= 7.21, stdev= 3.33
clat (usec): min=138, max=498280, avg=21347.45, stdev=40779.33
lat (usec): min=144, max=498296, avg=21354.72, stdev=40779.01

bw ( KiB/s): min= 968, max=49824, per=0.08%, avg=4240.17, stdev=1738.29, samples=9600
iops : min= 242, max=12456, avg=1059.99, stdev=434.58, samples=9600
lat (usec) : 2=0.01%, 20=0.01%, 50=0.01%, 100=0.71%, 250=9.39%
lat (usec) : 500=7.81%, 750=3.96%, 1000=3.80%
lat (msec) : 2=12.40%, 4=20.13%, 10=24.61%, 20=9.37%, 50=4.52%
lat (msec) : 100=1.43%, 250=1.70%, 500=0.17%
cpu : usr=0.68%, sys=3.44%, ctx=15563500, majf=0, minf=491
IO depths : 1=0.1%, 2=0.1%, 4=0.1%, 8=0.1%, 16=0.1%, 32=100.0%, >=64=0.0%

submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0%
complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.1%, 64=0.0%, >=64=0.0%
issued rwt: total=11866050,5093585,0, short=0,0,0, dropped=0,0,0

This is a sample output from a randrw.fio (random read/write) job run on an all-flash cluster of five nodes.

The main metrics are IOPS (iops) and bandwidth (bw):

read: IOPS=198k, BW=772Mi (809M)(45.3GiB/60078msec)
write: IOPS=84.8k, BW=331Mi (347M)(19.4GiB/60078msec)

Pay attention to IOPS when you benchmark random workloads and observe bandwidth when you test
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Chapter 5. Understanding Results

sequential operations. When you test random reads/writes also note the iodepth parameter that indicates

how many requests are queued and waiting.

In addition:

• slat is submission latency that indicates how much time it took to submit I/O to the kernel.

• clat is completion latency that indicates how much time passed between submission to the kernel and

completing the I/O (excluding submission latency).

• lat is the sum of slat and clat.
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CHAPTER 6

Appendix: Job Profile Listings

The following sections list job profiles that are made available to simplify benchmarking. Each profile

contains a number of parameters (on the example of randread.fio):

rw=randread

Fio scenario. In this case, random reads.

size=8g

Dataset size. Needs to be at least twice the size of RAM.

numjobs=16

Number of parallel tasks. Needs to be equal to the number of CPU cores.

bs=4k

Data block size.

ioengine=libaio

Asynchronous library. Requires the parameter ‘direct=1’.

iodepth=32

Queue depth for asynchronous requests.

time_based

Instructs fio to loop the scenario for the duration of ‘runtime’ if it completes sooner or end the scenario

if the time runs out.

runtime=60

Scenario duration (in seconds by default).

direct=1

This parameter forces data to be written directly to disk, without caching, and allow you to measure
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Chapter 6. Appendix: Job Profile Listings

disk’s actual write performance.

filename_format=__testfile’$jobnum’

File name format. In this case it depends on the number of tasks.

thread

Task type. If not set, processes will be created instead of threads.

directory=/mnt/vstorage/benchmark_dir

Target directory for the dataset.

6.1 randread.fio
Tests random read performance.

Node variant (download):

[randread]
rw=randread
size=2x<RAM>/<CPU_cores>
numjobs=<CPU_cores>
bs=4k
ioengine=libaio
iodepth=32
time_based
runtime=60
direct=1
filename_format=__testfile'$jobnum'
thread
directory=/mnt/vstorage/benchmark_dir

VM variant, for virtual machines with 4 vCPUs and 8 GB RAM (download):

[randread]
rw=randread
size=4g
numjobs=4
bs=4k
ioengine=libaio
iodepth=32
time_based
runtime=60
direct=1
filename_format=__testfile'$jobnum'
thread
directory=/sdb/
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Chapter 6. Appendix: Job Profile Listings

6.2 randwrite.fio
Tests random write performance.

Node variant (download):

[randwrite]
rw=randwrite
size=2x<RAM>/<CPU_cores>
numjobs=<CPU_cores>
bs=4k
ioengine=libaio
iodepth=32
time_based
runtime=60
direct=1
filename_format=__testfile'$jobnum'
thread
directory=/mnt/vstorage/benchmark_dir

VM variant, for virtual machines with 4 vCPUs and 8 GB RAM (download):

[randwrite]
rw=randwrite
size=4g
numjobs=4
bs=4k
ioengine=libaio
iodepth=32
time_based
runtime=60
direct=1
filename_format=__testfile'$jobnum'
thread
directory=/sdb/

6.3 randrw.fio
Tests random read/write performance.

Node variant (download):

[randrw]
rw=randrw
rwmixread=70
rwmixwrite=30
size=2x<RAM>/<CPU_cores>
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Chapter 6. Appendix: Job Profile Listings

numjobs=<CPU_cores>
bs=4k
ioengine=libaio
iodepth=32
time_based
runtime=60
direct=1
filename_format=__testfile'$jobnum'
thread
directory=/mnt/vstorage/benchmark_dir

VM variant, for virtual machines with 4 vCPUs and 8 GB RAM (download):

[randrw]
rw=randrw
rwmixread=70
rwmixwrite=30
size=4g
numjobs=4
bs=4k
ioengine=libaio
iodepth=32
time_based
runtime=60
direct=1
filename_format=__testfile'$jobnum'
thread
directory=/sdb/

6.4 seqread.fio
Tests sequential read performance.

Node variant (download):

[seqread]
rw=read
size=2x<RAM>/<CPU_cores>
numjobs=<CPU_cores>
bs=1m
ioengine=libaio
iodepth=32
time_based
runtime=60
direct=1
filename_format=__testfile'$jobnum'
thread
directory=/mnt/vstorage/benchmark_dir
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VM variant, for virtual machines with 4 vCPUs and 8 GB RAM (download):

[seqread]
rw=read
size=4g
numjobs=4
bs=1m
ioengine=libaio
iodepth=32
time_based
runtime=60
direct=1
filename_format=__testfile'$jobnum'
thread
directory=/sdb/

6.5 seqwrite.fio
Tests sequential write performance.

Node variant (download):

[seqwrite]
rw=write
size=2x<RAM>/<CPU_cores>
numjobs=<CPU_cores>
bs=1m
ioengine=libaio
iodepth=32
time_based
runtime=60
direct=1
filename_format=__testfile'$jobnum'
thread
directory=/mnt/vstorage/benchmark_dir

VM variant, for virtual machines with 4 vCPUs and 8 GB RAM (download):

[seqwrite]
rw=write
size=4g
numjobs=4
bs=1m
ioengine=libaio
iodepth=32
time_based
runtime=60
direct=1
filename_format=__testfile'$jobnum'
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Chapter 6. Appendix: Job Profile Listings

thread
directory=/sdb/

6.6 expand.fio
Tests sequential writes to a gradually growing file.

Node variant (download):

[expand]
rw=write
size=2x<RAM>/<CPU_cores>
numjobs=<CPU_cores>
bs=16m
ioengine=sync
iodepth=32
fallocate=0
time_based
runtime=60
direct=1
filename_format=__testfile'$jobnum'
thread
directory=/mnt/vstorage/benchmark_dir

VM variant, for virtual machines with 4 vCPUs and 8 GB RAM (download):

[expand]
rw=write
size=4g
numjobs=4
bs=16m
ioengine=sync
iodepth=32
fallocate=0
time_based
runtime=60
direct=1
filename_format=__testfile'$jobnum'
thread
directory=/sdb/
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6.7 prepare-set.fio
Creates a dataset for tests.

Node variant (download):

[seqwrite]
rw=write
size=2x<RAM>/<CPU_cores>
numjobs=<CPU_cores>
bs=1m
ioengine=libaio
iodepth=32
time_based
#runtime=60
direct=1
filename_format=__testfile'$jobnum'
thread
directory=/mnt/vstorage/benchmark_dir

VM variant, for virtual machines with 4 vCPUs and 8 GB RAM (download):

[seqwrite]
rw=write
size=4g
numjobs=4
bs=1m
ioengine=libaio
iodepth=32
time_based
#runtime=60
direct=1
filename_format=__testfile'$jobnum'
thread
directory=/sdb/
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