
VirtuozzoHybrid Infrastructure 5.3

12/13/2022

Benchmarking Guide

Table of contents
Introduction 3

Storage cluster best practices 4

Using similar hardware 4

Enabling NVMe performance 4

External caching 4

Enabling RDMA 4

Using jumbo frames 4

Choosing a cluster size 5

Benchmarking the network 6

Testing network connectivity between nodes 6

Testing network throughput under load 6

Benchmarking disks 7

Preparing benchmarks for disks 7

Running storage benchmarks 10

Benchmarking NFS, iSCSI, and S3 12

Requirements 12

Test cluster requirements 12

Load generator requirements 12

Coordinator node requirements 13

Network requirements 13

Deploying virtual machines with load generators 13

Creating the target storage 14

Setting up the benchmark for NFS and iSCSI 14

Installing fio 14

Mounting the NFS resource 15

Mounting the iSCSI resource 15

Setting up the benchmark for S3 16

Preparing to run the benchmark 17

Running the benchmark for NFS and iSCSI 18

Running fio 18

Collecting fio results 18

Running the benchmark for S3 19

Running GOSBench 19

Collecting GOSBench results 20

General considerations 21

2 Copyright © 2016-2022 Virtuozzo International GmbH

Introduction
This guide describes how to set up the storage cluster of Virtuozzo Hybrid Infrastructure, to run
performance benchmarks for the network and storage disks, as well as for the NFS, iSCSI, and S3
protocols.

We recommend benchmarking the infrastructure to ensure that the measured performance
matches your expectations. Benchmarking is impossible while the system is used for production
workloads, as benchmarks might disrupt user activities or significantly decrease performance. You
can perform the benchmarks immediately as soon as the cluster is deployed and configured. At this
stage, most performance issues and misconfigurations can be detected and prevented.

The specifics of every permutation of network environment, hardware platform, and workload
cannot be covered in every detail. This guide offers generic instructions on setting up a test
environment, so your mileage may vary. For more instructions, refer to the Administrator Guide.

3 Copyright © 2016-2022 Virtuozzo International GmbH

Storage cluster best practices

Using similar hardware
All cluster nodes must have identical or very similar hardware. Otherwise, the cluster will be
imbalanced in terms of performance, because the cluster performance is limited by the slowest
node in the cluster. This includes CPU, the amount of RAM, network cards, storage devices,
controllers, etc.

Moreover, all of the disks that are assigned to the same storage tier and role must be identical in
technology and size. For example, if you have different HDD disks in the same storage tier, it will
lead to unpredictable performance results, because the cluster speed is constrained by the slowest
device in the tier. Also, with HDDs of a different size, the physical storage space is used inefficiently,
resulting in unused resources.

Enabling NVMe performance
Enable NVMe performance to boost the performance of very fast devices such as NVMes. For details
on enabling and configuring this feature, refer to the Administrator Guide.

External caching
If your cluster has HDD disks, some workloads might benefit from an additional caching layer of fast
devices, such as SSDs or NVMes. Keep in mind that such a configuration is only optimal for some
workloads, but when possible, the gained performance completely justifies the added costs. For
details on storage cache configuration, refer to the Administrator Guide.

Enabling RDMA
If your cluster is equipped with RDMA-capable network cards (the only supported model is Mellanox
ConnectX-5), then you can enable RDMA for the storage backend network. This will reduce network
latency, especially with random workloads.

Note that it is usually preferable to enable RDMA before creating the storage cluster.

Using jumbo frames
If your cluster has 10+ Gbit/s network adapters, you can configure them to use jumbo frames (9000-
byte MTU), to achieve full performance.

To avoid performance issues, ensure that all the endpoints involved have the same MTU values.

Note that jumbo frames are currently not supported when using the Intel ixgbe network driver.

4 Copyright © 2016-2022 Virtuozzo International GmbH

Choosing a cluster size
When choosing between building one large cluster and multiple small clusters, with an equal
number of nodes in total, it is always preferable to have a single large cluster. The larger the cluster,
the better its performance, efficiency, and redundancy.

5 Copyright © 2016-2022 Virtuozzo International GmbH

Benchmarking the network
To benchmark the infrastructure network, we test network connectivity between all of the cluster
nodes, and then the overall network throughput under the maximum load.

Testing network connectivity between nodes
Start the iperf3 server on each node:

iperf3 -s -p 30001

Start the benchmark on each node:

NODES=`vinfra node list -f json | jq -r '.[].host' | grep -v $(hostname -s)`
 # for i in $NODES; do iperf3 -c $i -p 30001 ; done | egrep -i 'local|sender|receiver'

The output will be similar to the following:

[4] local 172.24.4.1 port 40666 connected to 172.24.4.2 port 30001
 [4] 0.00-10.00 sec 28.6 GBytes 24.5 Gbits/sec 44 sender
 [4] 0.00-10.00 sec 28.6 GBytes 24.5 Gbits/sec receiver
 [4] local 172.24.4.1 port 44968 connected to 172.24.4.4 port 30001
 [4] 0.00-10.00 sec 22.1 GBytes 19.0 Gbits/sec 1672 sender
 [4] 0.00-10.00 sec 22.1 GBytes 19.0 Gbits/sec receiver

Testing network throughput under load
Start one iperf3 server per client on each node:

for i in 1 2 3; do iperf3 -p 3000$i -s > /dev/null 2>&1 & done

Start the benchmark simultaneously on all of the nodes:

PORT=30001 # use a different port on every client (ranged 30001…30003)
 # NODES=`vinfra node list -f json | jq -r '.[].host' | grep -v $(hostname -s)`
 # for i in $NODES; do iperf3 -c $i -p $PORT ; done | egrep -i 'local|sender|receiver'

6 Copyright © 2016-2022 Virtuozzo International GmbH

Benchmarking disks
First, you need to prepare the benchmarking scripts, and then you can perform benchmarks for
each disk individually and all of them cumulatively.

Preparing benchmarks for disks
Change the following parameters in the fio scripts listed below:

 l size is 4G by default, but can be set to twice the node’s RAM divided by the node’s CPU cores.
 l numjobs is the number of CPU cores divided by 2 for an HDD, or the number of CPU cores for an

SSD.
 l iodepth is set to 2 or 4 for an HDD, or to 32 for an SSD.

Save the following scripts with the suggested filename on each node:

fio.write.single.randwrite

[job]
 blocksize=4k
 rw=randwrite
 direct=1
 buffered=0
 ioengine=libaio
 iodepth=32
 fdatasync=32
 size=8G
 numjobs=16

fio.write.single.seqwrite

[job]
 blocksize=1m
 rw=write
 direct=1
 buffered=0
 ioengine=libaio
 iodepth=32
 fdatasync=32
 size=8G
 numjobs=16

fio.write.all

[job]
 blocksize=4k
 rw=randwrite
 direct=1
 buffered=0
 ioengine=libaio
 iodepth=32

7 Copyright © 2016-2022 Virtuozzo International GmbH

 fdatasync=32
 size=8G
 numjobs=16

fio.read.random

[job]
 blocksize=4k
 rw=randread
 direct=1
 buffered=0
 ioengine=libaio
 iodepth=32
 fdatasync=32
 size=8g
 numjobs=16

fio.write.random

[job]
 blocksize=4k
 rw=randwrite
 direct=1
 buffered=0
 ioengine=libaio
 iodepth=32
 fdatasync=32
 size=8g
 numjobs=16

fio.read.seq

[job]
 blocksize=1m
 rw=read
 direct=1
 buffered=0
 ioengine=libaio
 iodepth=16
 fdatasync=32
 size=8g
 numjobs=16

fio.write.seq

[job]
 blocksize=1m
 rw=write
 direct=1
 buffered=0
 ioengine=libaio
 iodepth=16

8 Copyright © 2016-2022 Virtuozzo International GmbH

 fdatasync=32
 size=8g
 numjobs=16

cs_write_test.sh

#!/bin/sh

 cs_mounts=$(vstorage -c $(cat /mnt/vstorage/.vstorage.info/clustername) list-services |
grep vstorage.*cs | awk '{print$NF}')
 fio_config="$1"

 for d in $cs_mounts; do
 cs=`cat $d/control/id`
 echo "Testing $cs in $d..."
 test_dir="$(dirname $d)/test"
 mkdir $test_dir
 f=$test_dir/file
 log_file="$cs.$fio_config.log"
 fio --group_reporting --filename=$f $fio_config > $log_file
 result=`grep "write:" $log_file`
 echo $result
 rm -f $f
 rmdir $test_dir
 done

cs_all_write_test.sh

#!/bin/sh

 cs_mounts=$(vstorage -c $(cat /mnt/vstorage/.vstorage.info/clustername) list-services |
grep vstorage.*cs | awk '{print$NF}')
 fio_config="$1"

 echo "Test drives simlultaneously..."
 filenames=""
 log_file="$fio_config.log"

 for d in $cs_mounts; do
 cs=`cat $d/control/id`
 test_dir="$(dirname $d)/test"
 mkdir $test_dir
 f=$test_dir/file
 path="--filename=$f"
 filenames="$filenames $path"
 done

 fio --group_reporting $filenames $fio_config > $log_file
 result=`grep "write:" $log_file`
 echo $result

 for d in $cs_mounts; do

9 Copyright © 2016-2022 Virtuozzo International GmbH

 test_dir="$(dirname $d)/test"
 f=$test_dir/file
 # echo "Cleaning $f ..."
 rm -f $f
 rmdir $test_dir
 done

storage_test.sh

#!/bin/sh

 fio_config="$1"
 log_file="$(hostname).$fio_config.log"

 test_dir="/mnt/vstorage/test/$(hostname)"
 f="$test_dir/file"

 mkdir -p $test_dir
 echo "Testing in $f ..."
 fio --group_reporting --filename=$f $fio_config > $log_file

 result=`egrep "read:|write:" $log_file`
 echo $result

 rm -f $f
 rmdir $test_dir

Running storage benchmarks
 1. On each node, install the fio utility:

yum install fio

 2. On each node, test the random and sequential write IOPS performance of each drive:

./cs_write_test.sh fio.write.single.randwrite
 # ./cs_write_test.sh fio.write.single.seqwrite

 3. On any node, check the cumulative random and sequential write IOPS performance:

grep 'write:' *fio.write.single.randwrite.log | awk -F'[=k,]' '{sum+=$2} END {print
sum}'
 # grep 'write:' *fio.write.single.seqwrite.log | awk -F'[=k,]' '{sum+=$2} END {print
sum}'

 4. On each node, test the cumulative random write IOPS:

./cs_all_write_test.sh fio.write.all

You can also test the desired replication settings as follows:

10 Copyright © 2016-2022 Virtuozzo International GmbH

 1. 1. Create the test directory /mnt/vstorage/test, and then apply the desired replication settings
on it. For example:

mkdir /mnt/vstorage/test
 # vstorage set-attr -R /mnt/vstorage/test replicas=3:2
 # vstorage set-attr -R /mnt/vstorage/test failure-domain=host
 # vstorage set-attr -R /mnt/vstorage/test tier=0

 2. On any node, test the random read and write IOPS performance:

./storage_test.sh fio.read.random
 # ./storage_test.sh fio.write.random

 3. On any node, test the sequential read and write IOPS performance:

./storage_test.sh fio.read.seq
 # ./storage_test.sh fio.write.seq

11 Copyright © 2016-2022 Virtuozzo International GmbH

Benchmarking NFS, iSCSI, and S3
In this guide, the open-source fio (Flexible I/O) tester is used to benchmark the performance of NFS
and iSCSI, and GOSBench is used to benchmark the performance of S3 services.

To benchmark NFS, iSCSI or S3, follow this procedure:

 1. Ensure that the benchmarking requirements are met.

 2. [Optional] Deploy virtual machines with load generators from the prebuilt images.

 3. Create the NFS, iSCSI, or S3 service in the test cluster.

 4. Set up and prepare to run the benchmark.

 5. Run the benchmark.

Requirements

Test cluster requirements
In order to obtain the most realistic results, the test cluster must be the same as the production
cluster. If this is impossible, the test environment can be a replica of the production cluster or very
similar to it.

When trying to determine the ideal setup size, you might want to plan ahead for the possibility to
change the hardware configuration of your test cluster. With virtual machines, you can easily change
the amount of RAM, the number of CPUs, disks, etc. However, unlike a physical environment, a
virtual one might behave unpredictably.

The cluster should be made of identical nodes, to avoid performance disbalance, as the cluster
performance is often limited by the performance of the slowest component.

Load generator requirements
Depending on the benchmarking goal, the number of load generators can differ:

 l Use a single load generator to benchmark the maximum performance achievable by a single
process.

 l Use as many load generators as possible to benchmark the maximum cumulative cluster
throughput.

In either case, you can run load generators as virtual machines in the Virtuozzo Hybrid
Infrastructure cluster or as external machines (physical or virtual). When using external virtual
machines for load generators, keep in mind that virtual machines usually share the same network
infrastructure. For more accurate results, you need to make sure there is enough physical
bandwidth between load generators and the test cluster, and that there are plenty of other physical
resources, such as CPUs.

When targeting for the maximum cluster performance, or especially for the cumulative
performance of multiple resources, we recommend planning a variable number of load generator

12 Copyright © 2016-2022 Virtuozzo International GmbH

clients. This number can reach or exceed the number of nodes in the Virtuozzo Hybrid
Infrastructure cluster. If adding more load generators increases the performance results, this means
that the load generators' resources or number are not sufficient. Similarly to cluster nodes, load
generators must have the same hardware configuration.

Coordinator node requirements
The coordinator node is a special node that is used to coordinate load generators, that is, to start
and stop the benchmark on all other nodes. The coordinator node can be either a load generator or
a cluster node.

Network requirements
We recommend providing at least 50 GiB of network bandwidth, either as a single 50 GbE link or as
a bonded 2x25 GbE network connection, between load generators and the test cluster. Keep in
mind that the network can be a bottleneck when measuring performance.

All nodes must be able to reach each other over a network:

 l Cluster nodes must be reachable on network ports for standard iSCSI, NFS, and S3 services.
 l Load generators must be reachable on TCP port 8765 for fio testing.
 l The coordinator node must be reachable on TCP port 2000 for S3 testing.

You can open the ports in the admin panel or via iptables:

iptables -I INPUT -p tcp -m tcp -m multiport --dports 8765 -j ACCEPT
 # iptables -I INPUT -p tcp -m tcp -m multiport --dports 2000 -j ACCEPT

Deploying virtual machines with load generators
You can deploy virtual machines with load generators in the compute cluster of Virtuozzo Hybrid
Infrastructure by using the prebuilt images.

 1. Download and extract the images of the test VM templates:

wget https://docs.virtuozzo.com/fio/fio-test-images.tar.gz
 # tar xvzf fio-test-images.tar.gz

 2. Create templates from the extracted images:

vinfra service compute image create --file Centos7-fio-test-sys.qcow --os-distro
centos7 Centos7-fio-test-sys
 # vinfra service compute image create --file Centos7-fio-test-blank.qcow Centos7-fio-
test-blank

 3. Deploy test VMs from the templates:

13 Copyright © 2016-2022 Virtuozzo International GmbH

vinfra service compute server create FIO-Centos7 --count <N> --network id=<net> \
 --volume source=image,id=Centos7-fio-test-sys,size=10,boot-index=0 \
 --volume source=image,id=Centos7-fio-test-blank,size=64,boot-index=1 --flavor large

Where:
 l --count <N> is the number of nodes in your compute cluster, for example, --count 5. We

recommend creating VMs on a clean cluster, so that each node will have one VM. If you want
to test a single VM, use --count 1.

 l --network id=<net> is a network accessible by the host or virtual environment that you will run
the tests from, for example, public.

As the result, you will have a set number of identical virtual machines with the following
characteristics:

 l 4 vCPUs and 8 GiB RAM (the flavor large). If you want to use another flavor, make sure to update
the fio scripts and other job profiles accordingly, as described in "Setting up the benchmark for
NFS and iSCSI" (p. 14).

 l A 10 GiB system disk with the CentOS 7 operating system
 l A 64 GiB ext4 disk for tests
 l The network specified by the --network option
 l Login: root, password: CDEkOA%rXfd%wWnOHDXm

Creating the target storage
In the test cluster, create iSCSI, NFS, or S3 services that will serve as the target storage. To do this,
follow the instructions in the Administrator Guide:

 l For iSCSI targets, refer to Provisioning block storage space.
 l For NFS shares, refer to Provisioning file storage space.
 l For the S3 cluster, refer to Provisioning object storage space.

Note
For iSCSI and NFS, the recommended storage size is at least 3x the amount of available RAM.

Setting up the benchmark for NFS and iSCSI
To set up the benchmark for the NFS and iSCSI resources, install and confugure the fio tool, and
then mount the resources to all load generators.

Installing fio
 1. On the coordinator node, create a directory to store the fio scripts, for example, /root/scripts.

mkdir /root/scripts

14 Copyright © 2016-2022 Virtuozzo International GmbH

https://docs.virtuozzo.com/virtuozzo_hybrid_infrastructure_5_3_admins_guide/#provisioning-block-storage.html
https://docs.virtuozzo.com/virtuozzo_hybrid_infrastructure_5_3_admins_guide/#provisioning-file-storage.html
https://docs.virtuozzo.com/virtuozzo_hybrid_infrastructure_5_3_admins_guide/#provisioning-object-storage.html

 2. Download the fio benchmark scripts to the /root/scripts directory:

cd /root/scripts
 # url=https://docs.virtuozzo.com/fio/vm/; \
 wget $url/expand.fio $url/prepare-set.fio $url/randread.fio $url/randrw.fio
$url/randwrite.fio $url/seqread.fio $url/seqwrite.fio

 3. If required, install the fio benchmark tool on each load generator and on the coordinator node:

yum install fio -y

 4. Ensure that the following parameters in the fio scripts are correct:
 l size is at least twice the target node’s RAM, divided by the node’s CPU cores. For example, for

a quad-core node with 16 GiB RAM, the value should be 4g. This parameter sets the total
amount of data that each I/O thread will transfer.

 l numjobs is the number of CPU cores. If hyper-threading is enabled, use the number of CPU
threads instead. The goal is to fully load the CPU without overcommitting it. For example, on a
quad-core node with hyper-threading, the value should be 8. This parameter sets the amount
of I/O threads that will be started.

 l directory is the target directory to be tested. For example, if the resource to be tested is
mounted to /mnt/test, then update this field accordingly.

For more options, refer to the fio documentation.

Mounting the NFS resource
Mount the NFS resource to each load generator. As a mount directory, use the target directory that
you specified in the fio scripts, for example, /mnt/test.

To be able to mount an NFS resource, you might need to install the nfs-utils package.

yum install nfs-utils

To mount the NFS resource, run:

mount -t nfs -o vers=4.0 <share_IP>:<share_name> /mnt/test

Where:

 l -o vers=4.0 is the NFS version to use.
 l <target_IP> is the IP address or hostname of the NFS share.
 l <share_name> is the identifier of the NFS share.

Mounting the iSCSI resource
Access the iSCSI resource by following the detailed instructions in the Storage User Guide. Then,
mount the iSCSI device to each load generator. As a mount directory, use the target directory that
you specified in the fio scripts, for example, /mnt/test.

15 Copyright © 2016-2022 Virtuozzo International GmbH

https://fio.readthedocs.io/en/latest/fio_doc.html
https://docs.virtuozzo.com/virtuozzo_hybrid_infrastructure_5_3_users_guide/#accessing-iscsi-targets-from-linux.html

Setting up the benchmark for S3
To set up the benchmark for the S3 resource, install and configure the GOSBench tool as follows:

 1. Download and extract the tool from GitHub on each load generator and the coordinator node:

curl -OL https://github.com/mulbc/gosbench/releases/download/v0.4/gosbench_0.4_
Linux_x86_64.tar.gz
 # tar -xzf gosbench_0.4_Linux_x86_64.tar.gz

 2. On the coordinator node, create the file gosbench_script.yaml with the following configuration:

s3_config:
 - access_key: <ACCESS_KEY>
 secret_key: <SECRET_KEY>
 region: eu-central-1
 endpoint: <S3_ENDPOINT_URL>
 skipSSLverify: true

 grafana_config:
 endpoint: https://<GRAFANA_ENDPOINT>
 username: admin
 password: <ADMIN_PASSWORD>

 tests:
 - name: write test
 read_weight: 0
 existing_read_weight: 0
 write_weight: 100
 delete_weight: 0
 list_weight: 0
 objects:
 size_min: 1
 size_max: 100000
 part_size: 0
 size_distribution: random
 unit: KB
 number_min: 10
 number_max: 10
 number_distribution: constant
 buckets:
 number_min: 1
 number_max: 10
 number_distribution: constant
 bucket_prefix: 1255gosbenchobject_
 prefix: obj
 stop_with_runtime: 900s
 stop_with_ops:
 workers: <NUMBER_OF_WORKERS>
 workers_share_buckets: True
 parallel_clients: 3

16 Copyright © 2016-2022 Virtuozzo International GmbH

 clean_after: True

 - name: read test
 read_weight: 100
 existing_read_weight: 0
 write_weight: 0
 delete_weight: 0
 list_weight: 0
 objects:
 size_min: 1
 size_max: 100000
 part_size: 0
 size_distribution: random
 unit: KB
 number_min: 10
 number_max: 10
 number_distribution: constant
 buckets:
 number_min: 1
 number_max: 10
 number_distribution: constant
 bucket_prefix: 1255gosbenchobject_
 prefix: obj
 stop_with_runtime: 900s
 stop_with_ops:
 workers: <NUMBER_OF_WORKERS>
 workers_share_buckets: True
 parallel_clients: 3
 clean_after: True

 3. Update the required fields accordingly, in particular, these fields:
 l access_key is the S3 access key to access the resource.
 l secret_key is the S3 secret key to access the resource,
 l endpoint in the s3_config section is the S3 endpoint URL to access the resource.
 l endpoint in the grafana_config section is the Grafana dashboard URL, which is https://<admin_

panel_IP>:8888/grafana/d/dashboard-directory-en-US/.
 l password is the Grafana administrator password.
 l workers is the number of load generators. Note that there are multiple occurrences of this

parameter that need to be set to the same value.

For more details, refer to the GOSBench documentation.

Preparing to run the benchmark
If the cluster nodes have SSD/NVMe caches, make sure they have been flushed before running any
benchmarks. You can check the caches as follows:

17 Copyright © 2016-2022 Virtuozzo International GmbH

https://github.com/mulbc/gosbench

 1. On a cluster node, run:

vstorage -c <cluster_name> top

 2. While in the text-based dashboard, press c to expand the chunks tab, and then cycle columns by
pressing i until you see the JRN_FULL and FLAGS columns.

 3. Wait until JRN_FULL is 0% and each CS ID is marked by the c flag, for example, JCc. This may take
some time when the cluster is not under I/O load. The journal cleaning can be forced by running:

vstorage -c <cluster_name> set-config cs.force_checkpoint=1
 # vstorage -c <cluster_name> set-config cs.force_checkpoint=0

Running the benchmark for NFS and iSCSI

Running fio
 1. On each load generator node, start the fio server:

fio --server

 2. On the coordinator node, create the dataset. In this example, we assume the scripts are stored
in the /root/scripts directory, and we want to run the preparation script for the three load
generators at 10.10.10.11, 10.10.10.12, and 10.10.10.13:

 # for N in {10.10.10.11,10.10.10.12,10.10.10.13}; do fio --minimal --client=$N
/root/scripts/prepare-set.fio; done

You can also specify the hostnames of cluster nodes, instead if their IP addresses.

This command will prepare identical test datasets on all cluster nodes in succession. This may
take several minutes, but it will provide less deviation of results during actual benchmarking.
Ignore any performance results displayed by this fio run.

 3. On the coordinator node, start the desired benchmark script. In this example, we assume the
scripts are stored in the /root/scripts directory, and we want to run randread.fio for the three
load generators at 10.10.10.11, 10.10.10.12, and 10.10.10.13:

fio --client 10.10.10.11 --client 10.10.10.12 --client 10.10.10.13
/root/scripts/randread.fio

Collecting fio results
Fio shows several reports, one for each load generator participating in the benchmark. At the
bottom, you will find the section "All clients", which contains the summary of the overall
performance.

An example output is as follows:

18 Copyright © 2016-2022 Virtuozzo International GmbH

 […]
 All clients: (groupid=0, jobs=4): err= 0: pid=5190: Mon Mar 7 15:16:09 2022
 read: IOPS=18.9k, BW=73.9MiB/s (77.5MB/s)(8865MiB/120001msec)
 slat (usec): min=105, max=97552, avg=206.52, stdev=187.96
 clat (usec): min=5, max=299572, avg=53923.77, stdev=8760.84
 lat (usec): min=210, max=299745, avg=54131.08, stdev=8784.92
 clat percentiles (msec):
 | 1.00th=[44], 5.00th=[46], 10.00th=[47], 20.00th=[48],
 | 30.00th=[50], 40.00th=[52], 50.00th=[53], 60.00th=[54],
 | 70.00th=[56], 80.00th=[59], 90.00th=[64], 95.00th=[68],
 | 99.00th=[79], 99.50th=[82], 99.90th=[89], 99.95th=[106],
 | 99.99th=[296]
 bw (KiB/s): min=39528, max=88968, per=99.97%, avg=75622.67, stdev=1440.79,
 samples=957
 iops : min= 9882, max=22242, avg=18905.56, stdev=360.20, samples=957
 lat (usec) : 10=0.01%, 250=0.01%, 500=0.01%, 750=0.01%, 1000=0.01%
 lat (msec) : 2=0.01%, 4=0.01%, 10=0.01%, 20=0.01%, 50=32.91%
 lat (msec) : 100=67.02%, 250=0.01%, 500=0.04%
 cpu : usr=2.35%, sys=9.55%, ctx=2283821, majf=0, minf=1079
 IO depths : 1=0.1%, 2=0.1%, 4=0.1%, 8=0.1%, 16=0.1%, 32=0.1%, >=64=100.0%
 submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0%
 complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.1%
 issued rwts: total=2269396,0,0,0 short=0,0,0,0 dropped=0,0,0,0
 latency : target=0, window=0, percentile=100.00%, depth=256

 Run status group 0 (all jobs):
 READ: bw=73.9MiB/s (77.5MB/s), 73.9MiB/s-73.9MiB/s (77.5MB/s-77.5MB/s),
 io=8865MiB (9295MB),
 run=120001-120001msec

 Disk stats (read/write):
 sda: ios=2267039/1298, merge=0/967, ticks=417590/1434, in_queue=418444,
 util=99.22%

In this output, some of the most relevant metrics are highlighted in bold. They include IOPS, latency
(lat), I/O depth, and bandwidth (bw).

Running the benchmark for S3

Running GOSBench

Important
Ensure that you have configured the access script, as described in "Setting up the benchmark for
S3" (p. 16).

 1. On the coordinator node, start the benchmark server:

./server -c gosbench_script.yaml

19 Copyright © 2016-2022 Virtuozzo International GmbH

 2. On each load generator, start the benchmark workers:

./worker -p 8009 -s <coordinator_IP>:2000

Collecting GOSBench results
GOSBench shows performance results in the console, and also uses Prometheus and Grafana to
collect and graph results.

An example console output is as follows:

INFO[2022-06-07T15:09:47+03:00] Ready to accept connections
 INFO[2022-06-07T15:09:58+03:00] 127.0.0.1:57956 connected to us
 INFO[2022-06-07T15:09:58+03:00] We found worker 1 / 1 for test 0
Worker="127.0.0.1:57956"
 INFO[2022-06-07T15:10:03+03:00] All workers have finished preparations - starting
performance test test="write test"
 INFO[2022-06-07T15:25:20+03:00] All workers have finished the performance test -
continuing with next test test="write test"
 INFO[2022-06-07T15:25:20+03:00] GRAFANA: ?from=1654603803922&to=1654604720745
test="write test"
 INFO[2022-06-07T15:25:20+03:00] PERF RESULTS Average BW in Byte/s=6.638758826285763e+07
\
 Average latency in ms=3018.8787541713014 Test runtime on server=15m16.822798366s \
 Total Bytes=6.0183302998e+10 Total Operations=899 test="write test"

The line starting with INFO[<date>:<time>] GRAFANA includes a query string that you can append to
the Grafana dashboard URL. The admin panel provides the Grafana server and the S3 overview
dashboard that you can use to check the benchmark behavior:

20 Copyright © 2016-2022 Virtuozzo International GmbH

General considerations
 l To improve the validity of results, you need to perform 3-5 iterations of the same test.
 l For file tests, each test should take at least 60 seconds. The recommended time, however, is 120-

300 seconds, which can negate the benefits of fast cache on some SSD drives.
 l For S3 tests, the recommended run time is at least 900 seconds, which provides more stable

results.

21 Copyright © 2016-2022 Virtuozzo International GmbH

	Introduction
	Storage cluster best practices
	Using similar hardware
	Enabling NVMe performance
	External caching
	Enabling RDMA
	Using jumbo frames
	Choosing a cluster size

	Benchmarking the network
	Testing network connectivity between nodes
	Testing network throughput under load

	Benchmarking disks
	Preparing benchmarks for disks
	Running storage benchmarks

	Benchmarking NFS, iSCSI, and S3
	Requirements
	Test cluster requirements
	Load generator requirements
	Coordinator node requirements
	Network requirements

	Deploying virtual machines with load generators
	Creating the target storage
	Setting up the benchmark for NFS and iSCSI
	Installing fio
	Mounting the NFS resource
	Mounting the iSCSI resource

	Setting up the benchmark for S3
	Preparing to run the benchmark
	Running the benchmark for NFS and iSCSI
	Running fio
	Collecting fio results

	Running the benchmark for S3
	Running GOSBench
	Collecting GOSBench results

	General considerations

