Contents

1. Preparing for Installation ... 1
 1.1 Requirements for Standalone Installations 1
 1.2 Preparing for Installation from USB Storage Drives 2

2. Installing .. 4
 2.1 Starting Installation .. 4
 2.2 Installation Steps .. 4

3. Managing Virtual Environments ... 7
 3.1 Creating Virtual Environments .. 7
 3.1.1 Prerequisites for Creating Red Hat Enterprise Linux Containers ... 9
 3.2 Creating Storage Pools and Volumes ... 9
 3.3 Performing Actions on Virtual Environments 11

4. Upgrading ... 12
 4.1 Upgrading from Virtuozzo Hybrid Server 7 12
 4.2 Upgrading from Virtuozzo Linux 8 ... 13

5. Troubleshooting ... 14
CHAPTER 1

Preparing for Installation

This chapter lists the system requirements of Virtuozzo Hybrid Server 8 and explains how to create a bootable USB flash drive from the distribution image.

Virtuozzo Storage can be installed only using the kickstart file as described in Virtuozzo Hybrid Server 7 Installation Using PXE. Only the console tools are available. For instructions on how to use them, see the Virtuozzo Storage Administrator’s Command Line Guide.

1.1 Requirements for Standalone Installations

The recommended hardware requirements for running an alpha build of Virtuozzo Hybrid Server 8 as a standalone installation are as follows:

- x86-64 platform with hardware virtualization support: Intel VT-x (with “unrestricted guest”) or AMD Virtualization (tested only on AMD EPYC).

 Note: To check if the Intel processor supports the “unrestricted guest” feature: 1) Download `vmxcap.py` from GitHub, 2) Run `python vmxcap.py | grep -i unrest`. The result must be `yes`.

- CPUs: at least 4 cores, a 64-bit processor is required for running 64-bit guest operating systems.

- RAM: 4 GB or more.

- HDD: the minimal required disk size is the sum of the minimal `/vz` and root partitions, as well as the swap size:
Chapter 1. Preparing for Installation

\[
\text{min_hdd_size} = \text{min_vz_size} + \text{min_root_size} + \text{swap_size}
\]

Where \(\text{min_root_size} \) is 12 GiB, \(\text{min_vz_size} \) is 30 GiB, and \(\text{swap_size} \) depends on the RAM size.

- SSD (optional): at least 30 GiB (at least 32 GiB with /boot).
- Network: an Ethernet network adapter and a valid IP address.

You can also install Virtuozzo Hybrid Server in a virtual machine with similar virtual hardware. Make sure that nested virtualization support is enabled in your hypervisor.

Note: For Virtuozzo Storage system requirements, see Planning Infrastructure for Virtuozzo Storage with CLI Management

1.2 Preparing for Installation from USB Storage Drives

To install Virtuozzo Hybrid Server from a USB storage drive, you will need a 2 GB or higher-capacity USB drive and the Virtuozzo Hybrid Server 8 distribution ISO image.

Make a bootable USB drive by transferring the distribution image to it.

Important: Be careful to specify the correct drive to transfer the image to.

On Linux, you can use `dd`. For example:

```
# dd if=<VZ8_ISO_image> of=/dev/sdb
```

On Windows, you can use Rufus:

1. In the Drive Properties section, select your flash drive from the Device drop-down menu and click SELECT. Then, select the distribution image from your local machine.

2. Click START.
3. In the pop-up window, select **Write in DD Image mode** and click **OK**.
CHAPTER 2

Installing

This chapter explains how to install an alpha build of Virtuozzo Hybrid Server 8.

2.1 Starting Installation

Virtuozzo Hybrid Server can be installed from:

- IPMI virtual drives
- USB drives (see Preparing for Installation from USB Storage Drives (page 2))

To start the installation, do the following:

1. Configure the server to boot from the chosen media.
2. Boot the server and wait for the welcome screen.

2.2 Installation Steps

To install an alpha build of Virtuozzo Hybrid Server 8, choose Install Virtuozzo Hybrid Server on the welcome screen. After the installation program loads, you will see the Installation Summary screen. On this screen, you need to specify a number of parameters required to install Virtuozzo Hybrid Server.
Click **Installation Destination** screen and select a disk to install the system on.

Warning: All disks found by the installation program will be cleaned from partitions once you click **Begin Installation**.

Click **EULA** and accept the user agreement.

Click **Network & Host Name** and enter a valid host name. The Internet is not required to install an alpha build. Make sure, however, that a network adapter is up and working properly.

Click **Root Password** and set the password for the root user.

Having configured everything necessary on the **INSTALLATION SUMMARY** screen, click **Begin Installation**.

Once the installation is complete, click **Reboot** to restart the server.
Note: If you are installing Virtuozzo Hybrid Server from a USB drive, remove the drive before restarting the server.
CHAPTER 3

Managing Virtual Environments

This chapter lists basic commands that you can use to create and manage virtual environments and storage pools.

Note that by default, creating and performing actions on virtual environments is done by virt-install and virsh tools. The prl* tools are not provided by default but can be installed with:

```
# yum groupinstall "Virtuozzo Hypervisor - Legacy Tools"
# systemctl start prl-disp
```

3.1 Creating Virtual Environments

You can create virtual machines and containers using virt-install.

The following guest operating systems are supported in the alpha build:

<table>
<thead>
<tr>
<th>Guest OS</th>
<th>OS variant</th>
<th>EZ template</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlmaLinux 8</td>
<td>almalinux8</td>
<td>almalinux-8-x86_64</td>
</tr>
<tr>
<td>CentOS 7 (VM preset default)</td>
<td>centos7.0</td>
<td>centos-7-x86_64</td>
</tr>
<tr>
<td>Debian 10</td>
<td>debian10</td>
<td>debian-10.0-x86_64</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 7</td>
<td>rhel7.9</td>
<td>rhel-7-x86_64*</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 8</td>
<td>rhel8.4</td>
<td>rhel-8-x86_64*</td>
</tr>
<tr>
<td>SUSE Linux Enterprise Server 12</td>
<td>sles12</td>
<td>sles-12-x86_64</td>
</tr>
<tr>
<td>SUSE Linux Enterprise Server 15</td>
<td></td>
<td>sles-15-x86_64</td>
</tr>
<tr>
<td>Ubuntu 18.04 LTS</td>
<td>ubuntu18.04</td>
<td>ubuntu-18.04-x86_64</td>
</tr>
<tr>
<td>Ubuntu 20.04 LTS</td>
<td>ubuntu20.04</td>
<td>ubuntu-20.04-x86_64</td>
</tr>
</tbody>
</table>

Continued on next page
Table 3.1.1 -- continued from previous page

<table>
<thead>
<tr>
<th>Guest OS</th>
<th>OS variant</th>
<th>EZ template</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtuozzo Linux 7</td>
<td>vzlinux7</td>
<td>vzlinux-7-x86_64</td>
</tr>
<tr>
<td>Virtuozzo Linux 8</td>
<td>vzlinux8</td>
<td>vzlinux-8-x86_64</td>
</tr>
</tbody>
</table>

* Creating Red Hat Enterprise Linux containers requires additional steps. See *Prerequisites for Creating Red Hat Enterprise Linux Containers* (page 9).

Use the OS variant with the --os-variant option of *virt-install*. You can also replace the default centos7.0 in the Linux VM preset /etc/virt-manager/presets/vz_vm_linux. Use the EZ template when creating container hard disks with *vzpkg*. If the EZ template is not installed, it will be downloaded from the repository.

To create a Linux virtual machine, it is recommended to use the vz_vm_linux preset. For example:

```
# mkdir mylinuxvm
# virt-install \
  --name mylinuxvm \
  --preset vz_vm_linux \
  --ram 2048 \ 
  --vcpus 'sockets=1,cores=2' \ 
  --disk 'path=/vz/mylinuxvm/harddisk1.hdd,bus=scsi,startup_policy=optional,boot_order=1,size=64' \ 
  --disk 'path=/vz/CentOS-7-x86_64-LiveCD-1503.iso,device=cdrom,bus=scsi,boot_order=2' \ 
  --boot cdrom \
  --graphics vnc,port=5901,listen=0.0.0.0
Starting install...
Allocating 'harddisk1.hdd' | 64 GB 00:00:08
Domain creation completed.
```

To create a container (except Red Hat Enterprise Linux, see further), do the following:

1. Create a disk image with *vzpkg*. For example:

```
# vzpkg create image centos-7-x86_64 /vz/mylinuxct/mylinuxct.hdd
Creating Container root image at /vz/mylinuxct/mylinuxct.hdd (centos-7-x86_64)
Mount image: /vz/mylinuxct/mylinuxct.hdd
e2fsck 1.45.6 (20-Mar-2020)
tune2fs 1.45.6 (20-Mar-2020)
Warning: The kernel is still using the old partition table.
The new table will be used at the next reboot or after you run partprobe(8) or kpartx(8)
The operation has completed successfully.
Unmount image: /vz/mylinuxct/mylinuxct.hdd (190)
Image was succesfully created at /vz/mylinuxct/mylinuxct.hdd
```

2. Create the container based on the disk image. For example:

```
# virt-install \
```
Chapter 3. Managing Virtual Environments

--connect vzct:///system \
--name mylinuxct \
--memory 2048 \
--disk 'path=/vz/mylinuxct/mylinuxct.hdd,boot_order=1,size=64' \
--graphics vnc,port=5903,listen=0.0.0.0
WARNING Graphics requested but DISPLAY is not set. Not running virt-viewer.
WARNING No console to launch for the guest, defaulting to --wait -1

Starting install...
Domain creation completed.
You can restart your domain by running:
 virsh --connect vzct:///system start mylinuxct

3.1.1 Prerequisites for Creating Red Hat Enterprise Linux Containers

Creating Red Hat Enterprise Linux containers requires certificates being present on the host. You will need a working Red Hat Enterprise Linux 7 or 8 installation. The same certificates can be used for both versions.

Do the following before creating such containers:

1. In the repository file, e.g., /etc/yum.repos.d/redhat.repo, find the certificate paths. For example:

 sslcacert = /etc/rhsm/ca/redhat-uep.pem
 sslclientkey = /etc/pki/entitlement/4662537897317115958-key.pem
 sslclientcert = /etc/pki/entitlement/4662537897317115958.pem

2. Copy these certificates to /etc/rhel/ on the host where you will be creating Red Hat Enterprise Linux containers.

3.2 Creating Storage Pools and Volumes

Aside from regular virtual disks, you can create libvirt storage pools and divide them into volumes. The latter can be assigned to virtual environments as virtual disks.

Do the following:

1. Create a storage pool definition. For example, mypool.xml:

   ```xml
   <pool type='dir'>
   <name>mypool</name>
   <target>
     <path>/vz/mypool</path>
   </target>
   </pool>
   ```
2. Create the pool directory:

```bash
# mkdir /vz/mypool
```

3. Define and start the pool:

```bash
# virsh pool-define mypool.xml
Pool mypool defined from mypool.xml
# virsh pool-start mypool
Pool mypool started
```

4. Create a volume definition. For example, `mypool-volume1.xml`:

```xml
<volume type='file'>
  <name>volume1</name>
  <capacity unit='G'>64</capacity>
  <target>
    <format type='qcow2'/>
  </target>
</volume>
```

5. Create the volume in the storage pool:

```bash
# virsh vol-create mypool mypool-volume1.xml
Vol disk1 created from mypool-volume1.xml
```

6. Delete the default volume file:

```bash
# rm -f /vz/mypool/volume1
```

You can now specify `volume1` when creating a virtual machine. For example:

```bash
# virt-install \
  <...> \
  --disk 'source.pool=mypool,source.volume=volume1,boot_order=1,size=64<...>' \ 
  <...>
```

Or when creating a container. For example:

```bash
# vzpkg create image centos-7-x86_64 /vz/mypool/volume1 
# ploop resize -s 64G /vz/mypool/volume1/DiskDescriptor.xml 
# virt-install \
  <...> \
  --disk 'source.pool=mypool,source.volume=volume1,boot.order=1' \
  <...>
```
3.3 Performing Actions on Virtual Environments

Use `virsh` to manage virtual environments. By default `virsh` connects to the `qemu:///system` hypervisor used for virtual machines. To manage containers, connect to the `vzct:///system` hypervisor instead with `--connect vzct:///system`.

- To start a virtual machine, use `virsh start`. For example:

```
# virsh start mylinuxvm
Domain mylinuxvm started
```

To start a container, use the same command with the corresponding hypervisor. For example:

```
# virsh --connect vzct:///system start mylinuxct
Domain mylinuxct started
```

Note: You may need to install the `prl-vzvncserver.x86_64` package to be able to start containers.

- To connect to a running virtual environment via VNC, use the port you provided in the creation command in the `--graphics` option, e.g., `port=5901`.

- To connect to a running container, use `vzctl enter <CT_name_or_ID>`.

- To stop a virtual environment, use either `virsh shutdown` (graceful) or `virsh destroy` (forced, which may corrupt virtual environment’s hard disks). For example:

```
# virsh shutdown mylinuxvm
Domain mylinuxvm is being shutdown
# virsh --connect vzct:///system destroy mylinuxct
Domain mylinuxct destroyed
```

- To delete a stopped virtual environment, use `virsh undefine`. This command will only delete the virtual environment’s configuration. The hard disks will not be deleted. For example:

```
# virsh undefine mylinuxvm
Domain mylinuxvm has been undefined
```
This chapter describes how to upgrade to an alpha build of Virtuozzo Hybrid Server 8 from Virtuozzo Hybrid Server 7 or Virtuozzo Linux 8.

4.1 Upgrading from Virtuozzo Hybrid Server 7

To upgrade in-place from Virtuozzo Hybrid Server 7 to an alpha build of Virtuozzo Hybrid Server 8, do the following:

1. If applicable, unregister the node from the Virtuozzo Automator management node and remove it from the Virtuozzo Storage cluster.

2. Install the upgrade tool:

   ```bash
   # yum install vzupgrade
   ```

3. Check the system for upgrade eligibility:

   ```bash
   # vzupgrade check
   No upgrade blockers found!
   <...>
   A report has been generated at /var/log/leapp/leapp-report.json
   A report has been generated at /var/log/leapp/leapp-report.txt
   <...>
   Answerfile has been generated at /var/log/leapp/answerfile
   ```

 If issues are found, investigate the logs in /var/log/leapp. In addition, note the packages that are marked as unknown. They may be removed during the upgrade.

4. Perform the upgrade:
vzupgrade install

All virtual machines and containers will be stopped. Containers will also be checked for templates unsupported in Virtuozzo Hybrid Server 8.

The upgrade tool will perform preparation steps and ask you to reboot to the kernel Vz-Upgrade-Initramfs to perform the upgrade.

5. Reboot to the Virtuozzo Hybrid Server 8 kernel to complete the upgrade.

4.2 Upgrading from Virtuozzo Linux 8

To upgrade in-place from Virtuozzo Linux 8 to an alpha build of Virtuozzo Hybrid Server 8, run the upgrade script provided in the vzlinux-release package:

```bash
# do-upgrade-vzlin-vz8 --skip-license --accept-eula
```

The script will install the virtuozzo-release, ask you to accept the EULA (unless you specify --accept-eula as above), install the required package groups, create a network bridge for virtual environments, and enable the vz target and libvirtd services.

Reboot to the Virtuozzo Hybrid Server 8 kernel to complete the upgrade.

The upgrade does not affect the storage layout. You may need to adjust it to provide more space for /vz if you plan to store virtual environments there or use the legacy prl* tools.
CHAPTER 5

Troubleshooting

If you find any issues while you are testing an alpha build of Virtuozzo Hybrid Server 8, please feel free to report them to the technical support:

```
# vzreport -s
```

If the reporting tool is not available, install it with

```
# yum install vzreport
```